

QINGDAO FLUIDO INDUSTRIAL CO.,LTD

ADD: No.5 Nanhai Zhi Road, Qingdao, China TEL: +86 132 1015 3062 E-mail: info@eathu.com www.eathu.com www.fluidovalve.com

QINGDAO FLUIDO INDUSTRIAL CO., LTD

www.eathu.com www.fluidovalve.com

ENTERPRISE BRIEF INTRODUCTION

QINGDAO FLUIDO INDUSTRIAL CO., LTD, established in 1996, is a professional manufacturer and exporter of various valves, pipe fittings and OEM metal products. Its main products include:

Valves: Cast iron/Ductile iron/Cast steel valves (DIN3352 Resilient seated F4/F5 Gate valves, DIN3352 F4/F5 metal seated Gate valves, BS5163/BS5150/AWWA C509 Gate valves, API600 Gate valves, Cast iron butterfly valves, DIN/ANSI Globe valves, Wafer/swing check valves and Y-strainers.

Pipe fittings: Flanges, Butt Welding Pipe Fittings, high pressure pipe fittings, stainless steel screw fittings, pipe nipples and coupling.

We have passed not only the European CE certification for our valves and flanges, but also the ISO9001 assessment and registration by SGS for quality management. By virtue of 20+ years' business accumulation in more than 35 countries/regions, FLUIDO has been receiving worldwide attentions. "Trust from quality", with years of industrial experience, mature quality control, stable business operation processes, and a continuously developing ideas, FLUIDO is your best partner. Welcome to contact us, and we are committed to meeting all of your needs!

QINGDAO FLUIDO INDUSTRIAL CO.,LTD fue fundada en 1996 y se especializa en la producción y exportación de diversas válvulas, accesorios de tubería y productos metálicos OEM. Los principales productos son tales como:

Válvulas: válvulas de hierro fundido / hierro dúctil / acero fundido (válvula compuerta de asiento elástico DIN3352 F4 / F5, válvula compuerta de asiento metálico DIN3352 F4 / F5, válvula compuerta BS5163 / BS5150 / AWWA C509, válvula compuerta API600), válvula mariposa de hierro fundido, válvula de retención DIN/ANSI, válvula de control de pinzas / giratoria y filtro tipo Y.

Accesorios de tubería: bridas, accesorios para soldar a tope, accesorios de tubería de alta presión, accesorios de tubería roscados de acero inoxidable, niples y acoplamientos.

Nuestras válvulas y bridas no sólo han pasado la certificación europea CE, sino que también han pasado la evaluación y registro de gestión de calidad ISO9001 de SGS. Con más de 20 años de acumulación de negocios en más de 35 países, FLUIDO hemos conseguido la atención mundial. "Obtener la confianza con la calidad", con muchos años de experiencia en esta industria, control de calidad maduro, procesos operativos de negocio estables y conceptos de constante desarrollo, FLUIDO seríamos su mejor socio. Bienvenido a contactarse con nosotros, y estamos comprometidos a satisfacer todas sus necesidades!

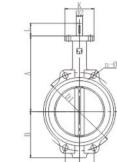
QUALIFICATION CERTIFICATE

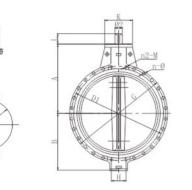
CATALOGUE

6	Wafer Butterfly Valve01
Ó	Lug Butterfly Valve02
0	Double Flanged Concentric Butterfly Valve03
5	Rubber Lined U Section Butterfly Valve04
0	Double Flanged Double Eccentric Butterfly Valve05
1 Sel	Gear Box Wafer Type Triple Offset Butterfly Valves06
	Lug Type Triple Offset Butterfly Valve07
h	F4 Resilient Seated Gate Valve08
Ĩ	F5 Resilient Seated Gate Valve09
T.	Big Size Resilient Seated Gate Valve10
1	BS Resilient Seated Gate Valve11
To	BS Resilient Seated Gate Valve12
Ā	AWWA Resilient Seated Gate Valve13
Å	AWWA Resilient Seated Gate Valve14
Ā	SABS Resilient Seated Gate Valve15
I.	Resilient Seated Gate Valve16
Ā	Non-Rising Stem Metal Seated Gate Valve17
Ĩ	Rising Stem Solid Wedge Gate Valve18
Ā	Rising Stem Solid Wedge Gate Valve19

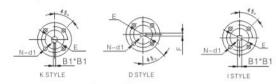
E OF CONFORMITY	
SHA/6010560/A SCHEDULE	
ements of the Pressure Equipment	
enerotis of the Pressure Equipment scare Equipment Regulations 1999, 199 No. 2001 and 2002 No. 1267	
dustrial Co.1.M	
Road Shinan District	
handong Province sublic of China	
Assoc of Cores	
marmine A.S.A.	
0106-100-1916	
Carde and Male	
View syleri	
acouse .	
• // MON //	
219	
and the state of t	
in the second second	

	•	WRAS
		PROFESSION STREET,
Marken of L Mark Statistical Statis Statiste Statistical Statistical Statis Statistical Statis S	Philade 201	
ینی که ۲۰۱۰ کی	Designing instantial Post NU MIL MTR	Durity (Decision)
	SKEEN HERELENDER SCHWEISE (20. ONLINE EINSELEITE BETEINE, MINDON,	
an in the second and a second a		Inder Hendel for human
A Paylet Port Versiter Annual	The antide control of the local distribution of the second distribution of the second distribution of the methods are physical antigenerity of the second distribution of the second di	and Recontingeds the
	TRATING, THAT'S & LONGS - NATURE AND BE FOR & THINKS - DUATING	
	In Descardor these with the UNET the Choice spherices working	
M Hansen and an	Saly onition more remaining or interaction function on 2010/11/1 date 248 Reserve (2)	6.
	with Real and Philippe and Annual Advances on an Willia	
	With Read to the set of the set of the With	
To these means the set of the set	APPORT ADDRESS TOOLS FOR ADDRESS TO THE TRUE TO THE	
Appointent and a Dool in partial and an III American and an advance and an advance and a second many. Here a new Mark and a second and a second and advance and a second many has been as a boost and associated and advance and advance and has been as a boost and a second advance and advance and has been as a boost and a second advance and advance and has been advance and advance and advance and has been advance a	The size is appropriate BEDRE which an add polyage Rand Coll and Rever \$27.	
and and a set of the s	The Extransi manifestive optics index against Approximited in and below intermed and permit	
1.40	An entry of all and a second sec	r mars thereas eres
14-	To Desire was in funcial service and provide a strapport from the	
WITHT Agenoretic Monager	Nam Setting	
WITHT Agenoretic Monager	129-	
	WILKS: Agenorate Monagen	


Determined and all and CONSTRUCTION (Constrained in the Constrained and Constr	
	-


Ā	Non-Rising Stem Metal Seated Gate Valve20
ł	Rising stem knife valve
I	Non-rising stem knife valve22
	Swing Check Valve23
9	Dual Plate Wafer Check Valve24
	Ball Check Valves25
Þ	DIN / BS Y strainer26
ł	Angle Globe Valve27
-	Globe Valve28
T	API OS&Y Gate Valve29-32
Å	DIN Gate Valave33-35
	API Globe Valve36-37
A.	DIN Globe Valve
(ā	API Swing Check Valve40-41
13	DIN Swing Check Valve42-43
-	Single Sphere Rubber Expansion Joint44
() 110 ()	Double Sphere Union Type Rubber Expansion Joint45
(Ì)	Full Bore Cast Iron Ball Valve46
đ	Fluido Stainless Steel Ball Valve47

Wafer Butterfly Valve



Material List

Name	Material	Specification ASTM
Body	Cast Iron, Ductile Iron, Carbon Steel, Stainless Steel	ASTM A126B, ASTM A536 A216 WCB, A351 CF8M A351 CF8
Disc	Plated Ductile Iron, Aluminum Bronze ,Stainless Steel	ASTM A536, B148-95400 A351 CF8M, A351 CF8
Stem	Stainless Steel	A276-410, A276-304 A276-316
Seat	NBR(NITRILE) EPDM NEOPRENE(CR) VITON(FKM) NATURAL RUBBER(NR) PTFE	
Pin	Stainless Steel	A182 F6A, A182 F304 A182 F316
Bushing	PTFE, Bronze	B62
O-Ring	NBR, EPDM, VITON	

Standard:

Size: DN40-DN1200(1.5"-48") Design standard:BS5155, API609, EN593 Test standard: DIN3230 Part3, API598, EN12266-1 Face to face standard:DIN3202K1, API609, EN558-1, ISO5752 Medium: water, sewage, oil, food, gas and so on. Flange connection:DIN2501 PN10/16, BS4504 PN10/16, ASME B16.1 125LB & 150LB, JISB2220 10K and so on. Working pressure: 10 bar /16 bar Test pressure: Shell:15bar/24bar Seal: 11bar/17.6 bar

Dimensions (mm)

SIZE	А	В	С	d0	PCD	N–Q	N1-M	ISO 5211	ФК	ΦΕ	N-Φd1	B1*B1		
DN40	120	70	33	12.6	110	4-19	-	F05	65	50	4-7	9x9	-	26
DN50	161	80	43	12.6	125	4-19	-	F07	90	70	4-10	11x11	-	26
DN65	175	89	46	12.6	145	4-19	-	F07	90	70	4-10	11x11		30
DN80	181	95	46	12.6	160	8-19	-	F07	90	70	4-10	11x11	-	30
DN100	200	114	52	15.77	180	8-19	-	F07	90	70	4-10	11*11	-	30
DN125	213	127	56	18.92	210	8-19	-	F07	90	70	4-10	14x14	-	30
DN150	226	139	56	18.92	240	8-22	-	F07	90	70	4-10	14x14		40
DN200	260	175	60	22.1	295	8-22	-	F10	125	102	4-12	17*17	-	40
DN250	292	203	68	28.45	350	12-22	-	F10	125	102	4-12	22x22	-	40
DN300	337	242	78	31.6	400	12-22	-	F10	125	102	4-12	22x22	-	40
DN350	368	267	78	31.6	460	16-22	-	F10	125	102	4-12	22x22	-	40
DN400	400	309	1022	33.15①	515	16-26	-	F14	175	140	4-18	27x27	-	50
DN450	422	328	1142	37.95①	565	20-26	-	F14	175	140	4-18	27x27	-	70
DN500	480	361	127	41.12①	620	20-26	-	F14	175	140	4-18	36x36	-	80
DN600	562	459	154	50.62①	725	20-30	-	F16	210	165	4-23	36x36	-	80
DN700	624	520	165	63.35	840	20-30	4-M27	F25	300	254	8-18	-	2-18	85
DN800	672	591	190	63.35	950	20-33	4-M30	F25	300	254	8-18	-	2-18	95
DN900	720	656	203	74.7	1050	24-33	4-M30	F25	300	254	8–18	-	2-20	118
DN1000	800	721	216	84.7	1160	24-36	4-M33	F25	300	254	8-18	-	2-22	118
DN1200	941	864	256	104.7	1380	28-39	4-M36	F30	350	298	8-22	-	2-28	154

Note:*The shaft end can be double D and key connection. From DN700 and above, the shaft end is double keys. •The flange connection of the above table can be DIN2501 PN16, ASME B16.47-A 125/150LB, BS4504 PN10/PN16, JIS B2220 10K and so on.

• Please inform us if there is any dimension need to be adjusted.

()When working pressure is PN16, the diameter of the stems are different from PN10.(from DN400-DN600)

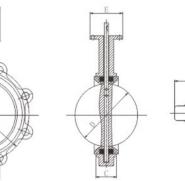
2DN400's valve face to face can be 85.7mm& 102mm, DN450's valve face to face can be 104mm&114mm.

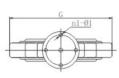
6	11		3	
6				
	and a	ت ر		
dore				

FLUIDO

Standard:

Size: DN40-DN1200(1.5"-48") Design standard: BS5155, API609, EN593 Test standard: DIN3230 Part3, API598, EN12266-1 Face to face standard: DIN3202K1, API609, EN55& 1, ISO5752 Medium: water, sewage, oil, food, gas and so on. Flange connection: DIN2501 PN10/16, BS4504 PN10/16, ASME B16.1 125LB & 150LB, JISB2220 10K and so on. Working pressure: 10 bar /16 bar Test pressure: Shell:15bar/24bar Seal: 11bar/17.6 bar

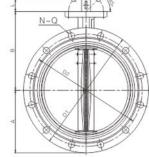

Dimensions (mm)

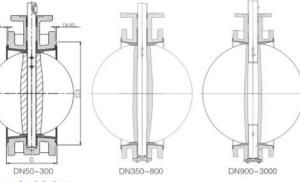

SIZE	А	В	С	d0	PCD	N-Q	ISO 5211	ΦK	ΦE	N-Φd1	B1*B1	J	L
DN40	120	70	33	12.6	110	4-M16	F05	65	50	4-7	9x9	-	26
DN50	161	80	43	12.6	125	4-M16	F07	90	70	4-10	11x11	-	26
DN65	175	89	46	12.6	145	4-M16	F07	90	70	4-10	11x11	-	30
DN80	181	95	46	12.6	160	8-M16	F07	90	70	4-10	11x11	-	30
DN100	200	114	52	15.77	180	8-M16	F07	90	70	4-10	11*11	-	30
DN125	213	127	56	18.92	210	8-M16	F07	90	70	4-10	14x14	-	30
DN150	226	139	56	18.92	240	8-M20	F07	90	70	4-10	14x14	-	40
DN200	260	175	60	22.1	295	8-M20	F10	125	102	4-12	17*17	-	40
DN250	292	203	68	28.45	350	12-M20	F10	125	102	4-12	22x22	-	40
DN300	337	242	78	31.6	400	12-M20	F10	125	102	4-12	22x22	-	40
DN350	368	267	78	31.6	460	16-M20	F10	125	102	4-12	22x22	-	40
DN400	400	309	1022	33.15①	515	16-M24	F14	175	140	4-18	27x27	-	50
DN450	422	328	1142	37.95①	565	20-M24	F14	175	140	4-18	27x27	-	70
DN500	480	361	127	41.12①	620	20-M24	F14	175	140	4-18	36x36	-	80
DN600	562	459	154	50.62①	725	20-M27	F16	210	165	4-23	36x36	-	80
DN700	624	520	165	63.35	840	24-M27	F25	300	254	8-18	-	2-18	85
DN800	672	591	190	63.35	950	24-M30	F25	300	254	8-18	-	2-18	95
DN900	720	656	203	74.7	1050	28-M33	F25	300	254	8–18	-	2-20	118
DN1000	800	721	216	84.7	1160	28-M33	F25	300	254	8-18	-	2-22	118
DN1200	941	864	256	104.7	1380	32-M26	F30	350	298	8-22	-	2–28	154

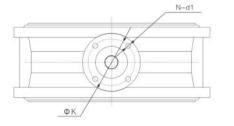
Note:*The shaft end can be double D and key connection. From DN700 and above, the shaft end is double keys. • The flange connection of the above table can be DIN2501 PN16, ASME B16.47-A 125/150LB, BS4504 PN10/PN16, JIS B2220 10K and so on. ·Please inform us if there is any dimension need to be adjusted.

() When working pressure is PN16, the diameter of the stems are different from PN10. (from DN400-DN600) 2DN400's valve face to face can be 85.7mm& 102mm, DN450's valve face to face can be 104mm&114mm.

Lug Butterfly Valve




Name	Material	Specification ASTM
Body	Cast Iron, Ductile Iron, Carbon Steel, Stainless Steel	ASTM A126B, ASTM A536 A216 WCB, A351 CF8M A351 CF8
Disc	Plated Ductile Iron, Aluminum Bronze ,Stainless Steel	ASTM A536, B148-95400 A351 CF8M, A351 CF8
Stem	Stainless Steel	A276-410, A276-304 A276-316
Seat	NBR(NITRILE) EPDM NEOPRENE(CR) VITON(FKM) NATURAL RUBBER(NR) PTFE	
Pin	Stainless Steel	A182 F6A, A182 F304 A182 F316
Bushing	PTFE, Bronze	B62
O-Ring	NBR, EPDM, VITON	



Standard:

Isolating valve (on/off), regulating valve. Double flanged butterfly valve can be used at end of pipe line,

maximum pressure not larger than 50% of the rated pressure.

Dimensions (mm)

		(·						_				
SIZE	А	В	С	d0	PCD	N–Q	ISO 5211	ФК	ΦΕ	N-Φd1	B1*B1		
DN50	110	80	108	12.6	125	4-19	F07	90	70	4-10	11x11		26
DN65	134	80	112	12.6	145	4-19	F07	90	70	4-10	11x11	-	30
DN80	131	95	114	12.6	160	8-19	F07	90	70	4-10	11x11	-	30
DN100	150	114	127	15.77	180	8-19	F07	90	70	4-10	11x11	-	30
DN125	170	114	140	18.92	210	8-19	F07	90	70	4-10	14*14	-	30
DN150	180	139	140	18.92	240	8-22	F07	90	70	4-10	14x14	-	40
DN200	210	175	152	22.1	295	8-22	F10	125	102	4-12	17x17	-	40
DN250	245	203	165	28.45	350	12-22	F10	125	102	4-12	22x22	-	40
DN300	276	242	178	31.6	400	12-22	F10	125	102	4-12	22x22	,	40
DN350	328	250	190	31.6	460	16-22	F10	125	102	4-12	22x22	-	40
DN400	376	310	216	33.15①	515	16-26	F14	175	140	4-18	27x27	-	50
DN450	407	332	222	37.95①	565	20-26	F14	175	140	4-18	27x27	-	70
DN500	433	358	229	41.12①	620	20-26	F14	175	140	4-18	36x36	-	80
DN600	508	423	267	50.62①	725	20-30	F16	210	165	4-23	36x36	-	80
DN700	560	479	292	63.35	840	24-30	F25	300	254	8-18	-	2-18	85
DN800	620	533	318	63.35	950	24-33	F25	300	254	8-18	-	2-18	95
DN900	692	602	330	75	1050	28-33	F25	300	254	8-18	-	2-20	118
DN1000	735	656	410	85	1160	28-36	F25	300	254	8-18	-	2-22	118
DN1200	917	781	470	105	1380	32-39	F30	350	298	8-22	-	2-28	154
DN1400	1000	925	530	120	1590	36-42	F35	415	356	8-32	-	2-32	200
DN1600	1150	1041	600	140	1820	40-48	F35	415	356	8-32	-	2-36	200
DN1800	1200	1156	670	160	2020	44-48	F40	475	406	8-40	-	2-40	200
DN2000	1360	1350	760	160	2230	48-48	F40	475	406	8-40	-	2-40	200
DN2200	1500	1430	800	180	2440	52-56	F48	560	483	12-40	-	2-45	300

Note:*The shaft end can be double D and key connection.DN700 and above are double key shaft end.

*The table above: Flange connection is DIN2501 PN10, the flange connection can also meet DIN2501 PN16, ASME B16.47-A 125LB/150LB, BS4504, PN10/16.JISB2220 10K. *Please inform us if there is any dimension need to be adjusted.

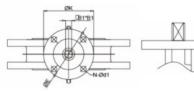
① If working pressure is PN16, the shaft diameter is different from the above


QINGDAO FLUIDO INDUSTRIAL CO.,LTD www.fluidovalve.com www.eathu.com info@eathu.com

Hatorial Elot								
Name	Material	Specification ASTM						
Body	Cast Iron, Ductile Iron Carbon Seel, Stainless Steel	ASTM A126B, ASTM A216 WCB, A351 CF A351 CF8						
Disc	Plated Ductile Iron, Aluminum Bronze Stainless Steel, Carbon Seel	ASTM A536,B148-9 A351 CF8M A351 C A216 WCB						
Stem	Carbon Seel Stainless Steel	A216 WCB A276-410 A276-3 A276-316 A276-31						
Seat	NBR(NITRILE), EPDM NEOPRENE(NR),VITON(FKM) NATURAL RUBBER(NR),PTFE							

Material List

Body	Cast Iron, Ductile Iron Carbon Seel, Stainless Steel	ASTM A126B, ASTM A536 A216 WCB, A351 CF8M A351 CF8				
Disc	Plated Ductile Iron, Aluminum Bronze Stainless Steel, Carbon Seel	ASTM A536,B148-954 A351 CF8M A351 CF8 A216 WCB				
Stem	Carbon Seel Stainless Steel	A216 WCB A276-410 A276-304 A276-316 A276-316L				
Seat	NBR(NITRILE), EPDM NEOPRENE(NR),VITON(FKM) NATURAL RUBBER(NR),PTFE					
Pin	Stainless Steel	A182 F6A, A182 F304 A182 F316				
Bushing	PTFE, Bronze	B62				
O-Ring	NBR, EPDM, VITON					



Standard:

Size: DN40-DN1200 (1.5"-48") Design standard: BS5155, API609, EN593 Test standards: DIN3230 Part3, API598, EN12266-1. Face to face standards : DIN3202K1, API609, EN558-1, ISO5752. Medium: water, sewage, oil, food, gas and so on. Flange connection: DIN2501 PN10/16, BS4504 PN10/16. ASME B16.1 125LB & 150LB, JISB2220 10K and so on. Working pressure: 25 bar Test pressure: Shell:28.8bar

Seal:27.5bar

Dimensions (mm

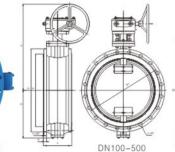
SIZE	А	В	С	d0	PCD	N–Q	ISO 5211	ΦΚ	ΦE	N-Φd1	B1*B1	L
DN40	120	70	33	12.6	98.6	4-19	F05	65	50	4-7	9x9	26
DN50	161	83	43	12.6	120.6	4-19	F07	90	70	4-10	11x11	26
DN65	175	93	46	12.6	139.7	4-19	F07	90	70	4-10	11x11	30
DN80	181	95	46	12.6	152.4	8-19	F07	90	70	4-10	11x11	30
DN100	200	114	52	15.77	190.5	8–19	F07	90	70	4-10	11x11	30
DN125	213	127	56	18.92	215.9	8-23	F07	90	70	4-10	14x14	30
DN150	226	140	56	18.92	241.3	8-23	F07	90	70	4-10	14x14	40
DN200	260	175	60	22.1	198.6	8-23	F10	125	102	4-12	17x17	40
DN250	292	203	68	28.45	362	12-26	F10	125	102	4-12	22x22	40
DN300	337	242	78	31.6	431.8	12-26	F10	125	102	4-12	22x22	40
DN350	368	267	78	31.6	476.3	12-29	F10	125	102	4-12	22x22	40
DN400	400	309	102	33.15①	539.8	16-29	F14	175	140	4–18	27x27	50
DN450	422	328	114	37.95①	577.9	16-32	F14	175	140	4–18	27x27	70
DN500	480	361	127	41.12①	635	20-32	F14	175	140	4-18	36x36	80
DN600	562	459	154	50.62①	749.3	20-35	F16	210	165	4-23	36x36	80

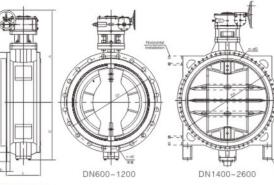
Note:*The shaft end can be double D and key connection.

*The flange connection of the above table can be DIN2501 PN16, ASME B16.47-A 125/150LB, BS4504 PN10/PN16, JIS B2220 10K and so on. *Please inform us if there is any dimension need to be adjusted.

(1) When working pressure is PN16, the diameter of the stems are different from PN 10.(from DN400-DN600)

FLUIDO Rubber Lined U Section Butterfly Valve




Name	Material	Specification ASTM
Body	Ductile Iron, Carbon Steel, Stainless Steel	ASTM A536 A216 WCB, A351 CF8M A351 CF8
Disc	Plated Ductile Iron, Aluminum Bronze ,Stainless Steel	ASTM A536, B148-954 A351 CF8M, A351 CF8
Stem	Stainless Steel	A276-410, A276-304 A276-316
Seat	NBR(NITRILE) EPDM NEOPRENE(CR) VITON(FKM) NATURAL RUBBER(NR) PTFE	
Pin	Stainless Steel	A182 F6A, A182 F304 A182 F316
Bushing	PTFE, Bronze	B62
O-Ring	NBR, EPDM, VITON	

FLUIDO Double Flanged Double Eccentric Butterfly Valve

Standard:

Size: DN100-DN1800 (4"-72") Design standard: BS5155, MSS SP 68 Test standard: DIN3230Part3, API598, EN12266-1 Face to face standards: DIN3202 F4, EN558 13/14 series, ISO5752 13/14 series Flange connection: DIN 2501 PN10/PN16, BS4504 PN10/PN16, ASME B16.1 125LB/150LB, JIS B2220 10K. Medium: water, oil, gas and so on. Working pressure: 10bar/16bar Test pressure: Shell: 15bar/24bar Seal: 11bar/17.6bar

Material List

Name	Material	Specification ASTM
Body	Ductile Iron	ASTM A536
Disc	Plated Ductile Iron	ASTM A536
Stem	Stainless Steel	A276-410
Disc	NBR(NITRILE)	
Sealing	EPDM	
Pin	Stainless Steel	A182 F6A
Clamping ring	Steel	
Bushing	PTFE	
Connecting bracket	Ductile Iron	ASTM A536
Packing gland	Ductile Iron	ASTM A536
Packing	EPDM, NBR	

Dimensions (mm)

SIZE	D	D1	D2	fx45°		L	n-0	А	в
SIZE	D		UZ	1X40	Long	Middle	11-0	A	P
100	220	158	180	3	190	127	8-19	234	122
125	250	180	210	3	200	140	8-19	255	141
150	285	213	240	3	210	140	8–23	279	153
200	340	268	295	3	230	152	12-23	349	216
250	405	320	355	3	250	165	12-28	406	219
300	460	370	410	4	270	178	12–28	542	267
350	520	437	470	4	290	190	16–28	583	315
400	580	482	525	4	310	216	16-31	620	350
450	640	548	585	4	330	222	20-31	667	373
500	715	609	650	4	350	229	20-34	702	428
600	840	720	770	5	390	267	20-37	759	450
700	910	800	840	5	430	292	24-37	885	528
800	1025	905	950	5	470	318	24-40	1013	573
900	1125	1001	1050	5	510	330	28-40	1071	639
1000	1255	1110	1170	5	550	410	28-43	1234	723
1200	1485	1330	1390	5	630	470	32-49	1343	833
1400	1686	1530	1590	5		530	36-49	1668	1078
1600	1930	1750	1820	5		600	40-56	1778	1218
1800	2130	1950	2020	5		670	44-56	2044	1426

Note:*The shaft end can be double D and key connection.DN700 and above are double key shaft end.

*The table above: Flange connection is DIN2501 PN10 but at the same time, the flange connection can also meet DIN2501 PN10, ASME B16.47-A 125LB/150LB, BS4504, PN10/16.JISB2220 10K.

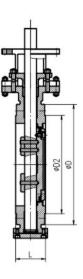
*Please inform us if there is any dimension need to be adjusted.

FLUIDO Gear Box Wafer Type Triple Offset Butterfly Valves

Features:

Design and manufacture standard: GB/T12238 API 609 End to end dimensions standard: GB/T12221 API 609 Inspection and test standard: GB/T13927 Or JB/T9092 API 598 Flange dimension standard: GB/T9113 JB/T79 Or HG20592 ASME B16.5 JIS DIN EN

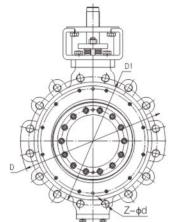
Material List

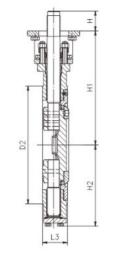

Item No.	Part Name	Specification	
1	Under Cover	WCB	12Cr18Ni9/F304/F304L/F316/F316
2	Body	WCB	ZG12Cr18Ni9/CF8/CFBM/CF3/CF3M
3	Stem	20Cr13	304/316
4	Disc	WCB	ZG12Cr18Ni9/CF8/CFBM/CF3/CF3M
5	Seat	NBR/PTFE/304+Flexible Graphite	NBR/PTFE/304+Flexible Graphite
6	Packing	Flexible Graphite	Flexible Graphite
7	Gland Packing	WCB	ZG12Cr18Ni9/CFB/CFBM/CF3/CF3M
8	Yoke	WCB	WCB
9	Stud	B72H	BB/B8M
10	Worm Gear		

DIMENSIONS (mm) AND WEIGHT D363H/W/F-PN10/16/25/40

MPa	DN	mm	100	125	150	200	250	300	350	400	450	500	600	700	800	900	1000	1200
	L	mm	56	64	70	71	76	83	92	102	114	127	154	165	190	203	216	254
	D	mm	155	185	210	265	320	375	435	485	545	608	718	788	898	998	1110	1325
	D1	mm	180	210	240	295	355	410	470	525	585	650	770	840	950	1050	1170	1390
PN16	Z-Φ	mm	4-18	4-18	4-23	4-23	4-25	4-25	4-25	4-30	8-30	4-34	8-41	8-41	8-41	8-41	12–48	12-5
	Н	mm	100	113	205	205	235	275	309	346	392	427	509	572	638	700	765	860
	H1	mm	239	252	307	309	337	392	435	4S1	S21	568	698	903	967	1175	1240	1350
	Weight	Kg	27	33	76	76	98	125	138	192	241	304	456	648	874	1128	1494	1943
	L	mm	64	70	89	89	114	114	127	140	152	152	178	229	241	241	300	350
	D	mm	160	188	278	278	332	390	448	505	555	610	718	815	930	1025	1140	1350
	D1	mm	190	220	310	310	370	430	490	550	600	660	770	875	930	1090	1210	1420
PN25	Z-Φ	mm	4-23	4-25	4-25	4-25	4-30	4-30	4-34	4-34	8-34	8-41	4-41	8-48	12-48	12–54	12–54	12-5
	н	mm	106	122	136	215	247	288	333	359	405	444	521	586	659	720	780	889
	H1	mm	245	255	287	312	344	410	453	488	542	631	832	910	981	1042	1101	1212
	Weight	Kg	32	48	52	70	110	140	155	235	280	410	500	740	1010	1430	1553	2250

Noted: Flange connection comply to EN, JIS, DIN, GB; ASME B16.25 standard.





Lug Type Triple Offset Butterfly Valve

Features:

Design and manufacture standard: GB/T12238 API 609 End to end dimensions standard: GB/T12221 API 609 Inspection and test standard: GB/T13927 Or JB/T9092 API 598 Flange dimension standard: GB/T9113 JB/T79 Or HG20592 ASME B16.5 JIS DIN EN

Material List

Item No.	Part Name	Specification	
1	Under Cover	WCB	12Cr18Ni9/F304/F304L/F316/F316
2	Body	WCB	ZG12Cr18Ni9/CF8/CFBM/CF3/CF3M
3	Stem	20Cr13	304/316
4	Disc	WCB	ZG12Cr18Ni9/CF8/CFBM/CF3/CF3M
5	Seat	NBR/PTFE/304+Flexible Graphite	NBR/PTFE/304+Flexible Graphite
6	Packing	Flexible Graphite	Flexible Graphite
7	Gland Packing	WCB	ZG12Cr18Ni9/CFB/CFBM/CF3/CF3M
8	Yoke	WCB	WCB
9	Stud	B72H	BB/B8M

MAIN CONNECTING DIMENSIONS LTD73H/W/F-150Lb

Nomir	nal diameter	L	D	D1	D2	Z-¢d	M(in)	H1	H2	Н
in	mm					150LB				
2"	DN50	43	150	120.7	92.1	4-19	5/8-11UNC-2B	193	94	20
3"	DN80	48	190	152.4	127	4-19	5/8-11UNC-2B	221	118	25
4"	DN100	54	230	190.5	157.2	4-19	5/8-11UNC-2B	243	130	30
5"	DN125	56	255	215.9	185.7	4-22	3/4-10UNC-2B	261	153	35
6"	DN150	57	280	241.3	215.9	4-22	3/4-10UNC-2B	273	165	40
8"	DN200	64	345	298.5	269.9	4-22	3/4-10UNC-2B	309	198	45
10"	DN250	71	405	362	323.8	8-26	7/8-9UNC-2B	337	235	50
12"	DN300	81	485	431.8	381	8-26	7/8-9UNC-2B	382.5	274.5	67
14"	DN350	92	535	476.5	412.8	8-29	1-8UNC-2B	435	314	81
16"	DN400	102	595	539.8	469.9	12-29	1-8UNC-2B	457	344	87
18"	DN450	114	635	577.9	533.4	12-32	1-1/8-8UNC-2B	510	369	98
20"	DN500	127	700	635	584.2	16-32	1-1/8-8UNC-2B	579	410.5	105
24"	DN600	154	815	749.3	692.2	16-35	1-1/4-8UNC-2B	635	472.5	117
28"	DN700	165	925	863.6	800	24-35	1-1/4-8UNC-2B	671	529.5	117
32"	DN800	190	1060	977.9	914	24-42	1-1/2-8UNC-2B	800	648	120
36"	DN900	203	1170	1085.8	1022	28-42	1-1/2-8UNC-2B	862	708.2	128
40"	DN1000	216	1290	1200.2	1124	32-42	1-1/2-8UNC-2B	955	766.2	170
48"	DN1200	254	1510	1422.4	1359	40-42	1-1/2-8UNC-2B	1088	884	182

Noted: Flange connection comply to EN, JIS, DIN, GB standard, ' ≤24' ASME B16.5*≥24' ASME B16.47–A/B.

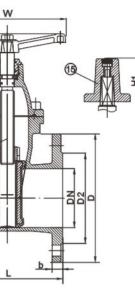
(8 9 6) 5 (4) 3 2 1

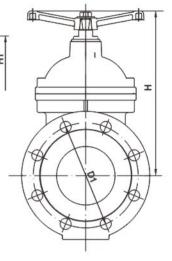
Technical Specification:

Valve Design: EN 1171, DIN3352、EN 1074-1 Face to Face: EN 558-1 Series 14, DIN3202 F4 Flange Drilling: EN 1092-2, ISO 7005-2 Hydraulic Test: EN 12266, ISO5208 Shell Test Pressure : 24 bar Seat Test Pressure: 17.6 bar

Features:

Bolted Bonnet Replaceable O-ring Rubber encapsulated wedge Brass Wedge Nut. FBE blue Coated inside and outside 200–300 Micro thickness. Working pressure from –1 to +16 Bar Working temperature from –10 to +80°C


Dimensions (mm)

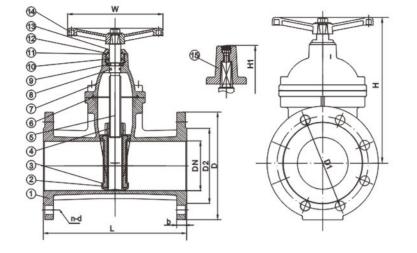

Size		D	b	EN	1092-2 PI	N10	EN	1092-2 P	N16	н	H1	w	W.T(kg)
Size	L	U	b	D1	D2	n-d	D1	D2	n-d	П	пі	vv	w.r(kg)
DN40	140	150	19	110	84	4-19	110	84	4-19	180	225	160	9
DN50	150	165	19	125	99	4-19	125	99	4-19	195	240	160	11
DN60	170	175	19	135	108	4-19	135	108	4-19	225	265	200	14
DN65	170	185	19	145	118	4-19	145	118	4-19	225	265	200	14
DN80	180	200	19	160	132	8-19	160	132	8-19	255	295	200	17
DN100	190	220	19	180	156	8-19	180	156	8-19	285	325	200	21
DN125	200	250	19	210	184	8-19	210	184	8–19	345	380	250	29
DN150	210	285	19	240	211	8-23	240	211	8-23	385	420	250	38
DN200	230	340	20	295	266	8-23	295	266	12-23	465	500	320	58
DN250	250	400	22	350	319	12-23	355	319	12-28	565	590	370	90
DN300	270	455	24.5	400	370	12-23	410	370	12-28	645	670	370	120

** FLUIDO reserve the right to do the technical modification, any technical information kindly contact with FLUIDO directly.

F4 Resilient Seated Gate Valve

DIN3352-F4/EN1171 PN10/PN16

Item No.	Part Name	Specification
1	Body	Ductile Iron GGG50
2	Wedge	Ductile Iron GGG50
3	Wedge Coating	NBR /EPDM EN 681-1
4	Wedge Nut	Copper Alloy
5	Stem	Stainless Steel X20 Cr13
6	Bonnet Gasket	NBR /EPDM EN 681-1
7	Bonnet	Ductile Iron GGG50
8	O Ring Back Sealing	EPDM/NBR
9	Stem Collar	Stainless Steel / Brass
10	O-Ring	EPDM/NBR
11	O-Ring	EPDM/NBR
12	Stuffing Nut	Copper Alloy
13	Dust Guard	EPDM/NBR
14	HandWheel	Ductile Iron GGG50
15	Stem Cap	Ductile Iron GGG50



F5 Resilient Seated Gate Valve

DIN3352-F5/EN1171 PN10/PN16

Technical Specification:

Valve Design: EN 1171、DIN3352、EN 1074–1 Face to Face: EN 558–1 Series 15、DIN3202 F5 Flange Drilling: EN 1092–2, ISO 7005–2 Hydraulic Test: EN 12266, ISO5208 Shell Test Pressure : 24 barSeat Test Pressure: 17.6 bar

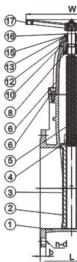
Features:

Bolted Bonnet Replaceable O-ring Rubber encapsulated wedge Brass Wedge Nut. FBE blue Coated inside and outside 200–300 Micro thickness. Working pressure from –1 to +16 Bar working temperature from –10 to +80°C

Material List

Item No.	Part Name	Specification
1	Body	Ductile Iron GGG50
2	Wedge	Ductile Iron GGG50
3	Wedge Coating	NBR /EPDM EN 681-1
4	Wedge Nut	Copper Alloy
5	Stem	Stainless Steel X20 Cr13
6	Bonnet Gasket	NBR /EPDM EN 681-1
7	Bonnet	Ductile Iron GGG50
8	O Ring Back Sealing	EPDM/NBR
9	Stem Collar	Stainless Steel / Brass
10	O-Ring	EPDM/NBR
11	O-Ring	EPDM/NBR
12	Stuffing Nut	Copper Alloy
13	Dust Guard	EPDM/NBR
14	HandWheel	Ductile Iron GGG50
15	Stem Cap	Ductile Iron GGG50

Dimensions (mm)


Cine	Size L	D	b	EN	EN 1092-2 PN10		EN 1092-2 PN16			н	H1	w	W.T(kg)
Size	Les	U	D	D1	D2	n–d	D1	D2	n-d	П	п	vv	vv. r(kg)
DN40	240	150	19	110	84	4-19	110	84	4-19	180	225	160	10.5
DN50	250	165	19	125	99	4-19	125	99	4-19	195	240	160	12
DN60	270	175	19	135	108	4-19	135	108	4-19	225	265	200	15.5
DN65	270	185	19	145	118	4-19	145	118	4-19	225	265	200	15.5
DN80	280	200	19	160	132	8-19	160	132	8-19	255	295	200	19.5
DN100	300	220	19	180	156	8-19	180	156	8-19	285	325	200	25.5
DN125	325	250	19	210	184	8-19	210	184	8-19	345	380	250	34
DN150	350	285	19	240	211	8-23	240	211	8-23	385	420	250	45
DN200	400	340	20	295	266	8-23	295	266	12-23	465	500	320	69
DN250	450	400	22	350	319	12-23	355	319	12-28	565	590	370	106
DN300	500	455	24.5	400	370	12-23	410	370	12-28	645	670	370	148

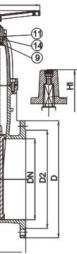
** FLUIDO reserve the right to do the technical modification, any technical information kindly contact with FLUIDO directly.

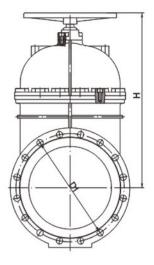
Technical Specification:

Valve Design: EN 1171, DIN3352, EN 1074–1 Face to Face: EN 558–1 Series 14,15 DIN3202 F4/F5 Flange Drilling: EN 1092–2, ISO 7005–2 Hydraulic Test: EN 12266、ISO5208 Shell Test Pressure : 24 bar Seat Test Pressure: 17.6 bar

Features:

Bolted Bonnet Replaceable O-ring Rubber encapsulated wedge Brass Wedge Nut. FBE blue Coated inside and outside 200–300 Micro thickness. Working pressure from –1 to +16 Bar working temperature from –10 to +80°C


Dimensions (mm)

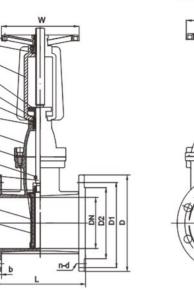

Size	1		D	b	EN	1092-2 PI	N10	EN	1092–2 PI	N16	н	w	W.T	(kg)
5126	F4	F5	U	U	D1	D2	n–d	D1	D2	n-d	п	٧V	F4	F5
DN350	290	550	520	26.5	460	429	16-23	470	429	16-28	762	450	175	220
DN400	310	600	580	28	515	480	16-28	525	480	16-31	836	450	223	290
DN450	330	650	640	30	565	530	20-28	585	548	20-31	957	640	322	420
DN500	350	700	715	31.5	620	582	20-28	650	609	20-34	1036	640	365	470
DN600	390	800	840	36	725	682	20-31	770	720	20-37	1188	640	539	700
DN700	430	900	910	39.5	840	794	24-31	840	794	24-37	1450	800	700	910
DN800	470	1000	1025	43	950	901	24-34	950	901	24-41	1660	1000	950	1235
DN1000	550	1200	1255	50	1160	1112	28-37	1170	1112	28-44	2100	1000	1400	1820

** FLUIDO reserve the right to do the technical modification, any technical information kindly contact with FLUIDO directly.

Big Size Resilient Seated Gate Valve

DIN3352-F4/F5 PN10/PN16(DN350-DN1000)

Item No.	Part Name	Specification					
1	Body	Ductile Iron GGG50					
2	Wedge	Ductile Iron GGG50					
3	Wedge Coating	NBR/EPDM EN 681-1					
4	Wedge Nut	Copper Alloy					
5	Stem	Stainless Steel X20 Cr13					
6	Bonnet Gasket	NBR/EPDM EN 681-1					
7	Bonnet	Ductile Iron GGG50					
8	O Ring Back Sealing	EPDM/NBR					
9	Down Bushing	Copper Alloy					
10	O Ring	EPDM/NBR					
11	Stem Collar	Stainless Steel / Brass					
12	O-Ring	EPDM/NBR					
13	O-Ring	EPDM/NBR					
14	Gland Flange	Ductile Iron GGG50					
15	Stuffing Cork	Copper Alloy					
16	Dust Guard	EPDM/NBR					
17	HandWheel	Ductile Iron GGG50					
18	Stem Cap	Ductile Iron GGG50					



BS Resilient Seated Gate Valve

BS5163 Rising Stem PN10/PN16

Material List

5-

4-

3-

2-

1

Item No.	Part Name	Specification					
1	Body	Ductile Iron EN- GJS- 500-7					
2	Wedge	Ductile Iron EN- GJS- 500-7					
3	Wedge Coating	NBR /EPDM EN 681-1					
4	Wedge Nut	Copper Alloy					
5	Stem	Stainless Steel X20 Cr13					
6	O Ring Back Sealing	EPDM/NBR					
7	Bonnet Gasket	NBR /EPDM EN 681-1					
8	Bonnet	Ductile Iron EN- GJS-500-7					
9	Packing Cork	Copper Alloy					
10	O-Ring	EPDM/NBR					
11	Parking O-Ring	EPDM/NBR					
12	Gland Flange	Ductile Iron EN- GJS-500-7					
13	Yoke	Ductile Iron EN- GJS- 500-7					
14	Stem Nut	Copper Alloy					
15	HandWheel	Ductile Iron EN- GJS-500-7					

Hydraulic Test: EN 12266, ISO5208 Shell Test Pressure : 24 bar Seat Test Pressure: 17.6 bar

Features:

Outside stem and yoke (OS&Y) Stem Seal with O-ring Bolt bonnet, Full bore Rubber encapsulated wedge Brass Wedge Nut. FBE blue Coated inside and outside 200-300 Micro thickness. Working pressure from -1 to +16 Bar working temperature from −10 to +80°C

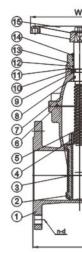
Technical Specification:

Face to Face: BS5163, EN 558-1 Series 13

Flange Drilling: EN 1092-2, ISO 7005-2

Valve Design: EN 1171, BS5163、 EN 1074-1&2

Dimensions (mm)


Cino	Size L	D	b	EN	1092-2 PM	V10	EN 1092-2 PN16			н	w	W.T(kg)
Size	L.	U	u	D1	D2	n-d	D1	D2	n-d	п	vv	W.I(Kg)
DN40	165	150	19	110	84	4-19	110	84	4-19	240	180	12
DN50	178	165	19	125	99	4-19	125	99	4-19	250	180	13.5
DN65	190	185	19	145	118	4-19	145	118	4-19	265	180	18
DN80	203	200	19	160	132	8-19	160	132	8-19	300	200	22
DN100	229	220	19	180	156	8-19	180	156	8-19	350	200	29
DN125	254	250	19	210	184	8-19	210	184	8-19	410	250	38.5
DN150	267	285	19	240	211	8-23	240	211	8-23	450	250	410
DN200	292	340	20	295	266	8-23	295	266	12-23	550	320	76
DN250	330	400	22	350	319	12-23	355	319	12-28	650	360	114
DN300	356	455	24.5	400	370	12-23	410	370	12-28	710	360	162
DN350	381	520	26.5	460	429	16-23	470	429	16-28	762	450	260
DN400	406	580	28	515	480	16-28	525	480	16-31	836	450	339

** FLUIDO reserve the right to do the technical modification, any technical information kindly contact with FLUIDO directly.

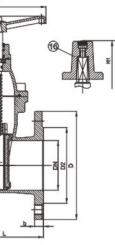
FLUIDO

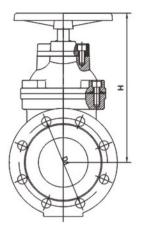
Technical Specification:

Valve Design: EN 1171, BS5163, EN 1074-1&2 Face to Face: BS5163, EN 558-1 Series 13 Flange Drilling: EN 1092-2, ISO 7005-2 Hydraulic Test: EN 12266, ISO5208 Shell Test Pressure : 24 bar Seat Test Pressure: 17.6 bar

Features:

Bolted Bonnet Replaceable O-ring Rubber encapsulated wedge Brass Wedge Nut. FBE blue Coated inside and outside 200-300 Micro thickness. Working pressure from -1 to +16 Bar working temperature from −10 to +80°C


Dimensions (mm)


0:	L	D	b	EN	1092-2 PN	J10	EN	1092-2 PN	V16	н	w	W.T(kg)
Size	L	U	a	D1	D2	n-d	D1	D2	n–d		vv	w.r(kg)
DN40	165	150	19	110	84	4-19	110	84	4-19	240	160	10.3
DN50	178	165	19	125	99	4-19	125	99	4-19	250	160	11.5
DN65	190	185	19	145	118	4-19	145	118	4-19	265	200	15
DN80	203	200	19	160	132	8-19	160	132	8-19	300	200	18.5
DN100	229	220	19	180	156	8-19	180	156	8-19	350	200	24
DN125	254	250	19	210	184	8-19	210	184	8-19	410	250	32
DN150	267	285	19	240	211	8-23	240	211	8-23	450	250	341
DN200	292	340	20	295	266	8-23	295	266	12-23	550	320	63
DN250	330	400	22	350	319	12-23	355	319	12-28	650	370	95
DN300	356	455	24.5	400	370	12-23	410	370	12-28	710	370	135
DN350	381	520	26.5	460	429	16-23	470	429	16-28	762	450	216
DN400	406	580	28	515	480	16-28	525	480	16-31	836	450	282
DN450	432	640	30	565	530	20-28	585	548	20-31	957	640	414
DN500	457	715	31.5	620	582	20-28	650	609	20-34	1036	640	498
DN600	508	840	36	725	682	20-31	770	720	20-37	1188	640	690

** FLUIDO reserve the right to do the technical modification, any technical information kindly contact with FLUIDO directly.

BS Resilient Seated Gate Valve

BS5163 Non-Rising Stem PN10/PN16

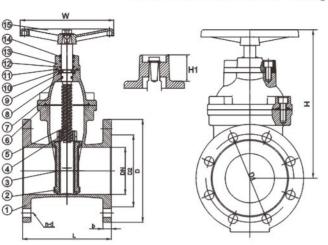
Item No.	Part Name	Specification
1	Body	Ductile Iron EN-GJS-500-7
2	Wedge	Ductile Iron EN- GJS-500-7
3	Wedge Coating	NBR /EPDM EN 681-1
4	Wedge Nut	Copper Alloy
5	Stem	Stainless Steel X20 Cr13
6	Bonnet Gasket	NBR /EPDM EN 681-1
7	Bonnet	Ductile Iron EN- GJS-500-7
8	O Ring Back Sealing	EPDM/NBR
9	Stem Washer	PEFE
10	Stem Collar	Stainless Steel / Brass
11	O-Ring	EPDM/NBR
12	O-Ring	EPDM/NBR
13	Gland Flange	Ductile Iron EN- GJS-500-7
14	Dust Guard	EPDM/NBR
15	HandWheel	Ductile Iron EN- GJS-500-7
16	Stem Cap	Ductile Iron EN-GJS-500-7

AWWA Resilient Seated Gate Valve

AWWA C515/C509 Non-Rising Stem 250PSI

Technical Specification:

Valve Design: AWWA C515, AWWA C509 Face to Face: ANSI B16.10 Flange Drilling: ANSI B16.1, ANSI B16.42 Hydraulic Test: AWWA C515, AWWA C509, ISO5208 Shell Test Pressure: 375 psi Seat Test Pressure: 275 psi

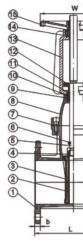

Features:

Bolted Bonnet
Replaceable O-ring
Rubber encapsulated wedge
Brass Wedge Nut.
FBE blue Coated inside and outside
200–300 Micro thickness.
Working pressure 250 PSI/17.2 Bar Non–Shock Cold
working temperature from −10 to +80°C

Dimensions (mm)

Size		D	D1	b	n-d	н	H1	W	W.T(kg)
1 1/2"	165	127	98.5	14.2	4-16	250	280	180	10.5
2"	178	152	120.7	15.8	4-19	255	285	180	11.5
2 1/2"	191	178	139.7	17.5	4-19	280	310	180	15.0
3"	203	191	152.4	19	4-19	300	330	200	19.0
4"	229	229	190.5	23.9	8-19	344	374	230	28.5
5"	254	254	215.9	23.9	8-22	410	440	250	36.5
6"	267	279	241.3	25.4	8-22	441	471	280	40.0
8"	292	343	298.5	28.5	8-22	529	559	320	74.5
10"	330	406	362	30.2	12-25	614	644	360	109.0
12"	356	483	431.8	31.8	12-25	700	730	500	159.0
14"	381	533	476.3	35	12-29	880	910	500	242.5
16"	406	597	539.8	36.6	16-29	990	1020	500	315.5
18"	432	635	577.9	39.6	16-32	1120	1150	500	441.5
20"	457	699	635	42.9	20-32	1220	1250	500	529.0
24"	508	813	7493	47.8	20-35	1370	1400	500	725 0

** FLUIDO reserve the right to do the technical modification, any technical information kindly contact with FLUIDO directly.


Material List

Item No.	Part Name	Specification
1	Body	Ductile Iron ASTM A536 65-45-12
2	Wedge	Ductile Iron ASTM A536 65-45-12
3	Wedge Coating	EPDM/NBR ASTM D2000
4	Wedge Nut	Copper Alloy
5	Stem	Stainless Steel ASTM A276 SS410
6	Bonnet Gasket	EPDM ASTM D2000
7	Bonnet	Ductile Iron ASTM A536 65-45-12
8	O Ring Back Sealing	EPDM ASTM D2000
9	Stem Washer	PTFE
10	Stem Coller	Stainless Steel/Brass
11	O-Ring	EPDM ASTM D2000
12	O-Ring	EPDM ASTM D2000
13	Gland Flange	Ductile Iron ASTM A536 65-45-12
14	Dust Guard	EPDM ASTM D2000
15	HandWheel	Ductile Iron ASTM A536 65-45-12
16	Stem Cap	Ductile Iron ASTM A536 65-45-12

** FLUIDO reserve the right to do the technical modification, any technical information kindly contact with FLUIDO directly.

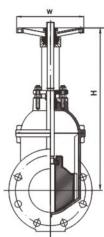
Technical Specification:

Valve Design: AWWA C515, AWWA C509 Face to Face: ANSI B16.10 Flange Drilling: ANSI B16.1, ANSI B16.42 Hydraulic Test: AWWA C515, AWWA C509, ISO5208 Shell Test Pressure: 375 psi Seat Test Pressure: 275 psi

Features:

Outside stem and yoke (OS&Y) Stem Seal with O-ring Bolt bonnet, Full bore Rubber encapsulated wedge Brass Wedge Nut. FBE blue Coated inside and outside 200-300 Micro thickness. Working pressure from -1 to +16 Bar working temperature from -10 to +80°C

Dimensions (mm)


Size		D	D1	b	n-d	н	H1	W	W.T(kg)
1 1/2"	165	127	98.5	14.2	4-16	250	250	180	13
2"	178	152	120.7	15.8	4-19	255	255	180	14
2 1/2"	191	178	139.7	17.5	4-19	280	280	180	16
3"	203	191	152.4	19	4-19	300	300	200	23
4"	229	229	190.5	23.9	8-19	344	344	230	28
5"	254	254	215.9	23.9	8-22	410	410	250	37
6"	267	279	241.3	25.4	8-22	441	441	280	52
8"	292	343	298.5	28.5	8-22	529	529	320	77
10"	330	406	362	30.2	12-25	614	614	360	127
12"	356	483	431.8	31.8	12-25	700	700	500	176
14"	381	533	476.3	35	12-29	880	880	500	322
16"	406	597	539.8	36.6	16-29	990	990	500	432
18"	432	635	577.9	39.6	16-32	1120	1120	500	542
20"	457	699	635	42.9	20-32	1220	1220	500	695
24"	508	813	7493	47.8	20-35	1370	1370	500	845

1

AWWA Resilient Seated Gate Valve

AWWA C515/C509 Rising Stem 250PSI

tem No.	Part Name	Specification
1	Body	Ductile Iron ASTM A536 65-45-12
2	Wedge	Ductile Iron ASTM A536 65-45-12
3	Wedge Coating	E EPDM ASTM D2000
4	Wedge Nut	Copper Alloy
5	Stem	Stainless Steel X20 Cr13
6	O Ring Back Sealing	EPDM ASTM D2000
7	Bonnet Gasket	EPDM ASTM D2000
8	Bonnet	Ductile Iron ASTM A536 65-45-12
9	Packing Cork	Copper Alloy
10	O-Ring	EPDM ASTM D2000
11	Parking O-Ring	EPDM ASTM D2000
12	Gland Flange	Ductile Iron ASTM A536 65-45-12
13	Yoke	Ductile Iron ASTM A536 65-45-12
14	Stem Nut	Copper Alloy
15	HandWheel	Ductile Iron ASTM A536 65-45-12

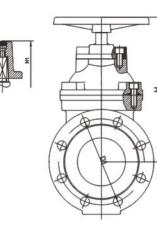
SABS Resilient Seated Gate Valve

SABS664 PN10/PN16

Technical Specification:

Valve Design: SABS 664 Face to Face: SABS 664 Flange Drilling: EN 1092-2, ISO 7005-2 Hydraulic Test: EN 12266, ISO5208 Shell Test Pressure : 24 bar Seat Test Pressure: 17.6 bar

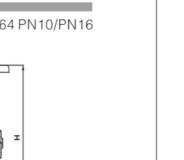
Features:


Bolted Bonnet
Replaceable O-ring
Rubber encapsulated wedge
Brass Wedge Nut.
FBE blue Coated inside and outside
200–300 Micro thickness.
Working pressure from –1 to +16 Bar
working temperature from –10 to +80°C

Dimensions (mm)

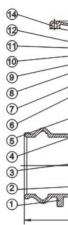
0.00	1	L	5	h	EN	1092–2 Pl	N10	EN	1092–2 PI	N16	н	w	W.T	(kg)
Size	SABS 665	SABS 664	D	b	D1	D2	n-d	D1	D2	n-d	П	vv	SABS 665	SABS 664
DN50	178	216	165	19	125	99	4-19	125	99	4-19	250	160	11.5	12
DN80	203	229	200	19	160	132	8-19	160	132	8–19	300	200	18.5	19.5
DN100	229	254	220	19	180	156	8–19	180	156	8-19	350	200	24	26
DN150	267	280	285	19	240	211	8–23	240	211	8-23	450	250	34	45
DN200	292	317	340	20	295	266	8-23	295	266	12-23	550	320	63	69
DN250	330	356	405	22	350	319	12-23	355	319	12-28	650	370	95	106
DN300	356	380	460	24.5	400	370	12-23	410	370	12-28	710	370	135	148
DN350	381	470	520	26.5	460	429	16-23	470	429	16–28	762	450	216	240
DN400	406	470	580	28	515	480	16-28	525	480	16-31	836	450	282	310
DN450	432	485	640	30	565	530	20-28	585	548	20-31	957	640	414	440
DN500	457	510	715	31.5	620	582	20-28	650	609	20-34	1036	640	498	530
DN600	508	600	840	36	725	682	20-31	770	720	20-37	1188	640	690	750

** FLUIDO reserve the right to do the technical modification, any technical information kindly contact with FLUIDO directly.


Material List

(5)

4


3

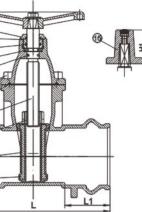
Item No.	Part Name	Specification
1	Body	Ductile Iron EN- GJS- 500-7
2	Wedge	Ductile Iron EN- GJS- 500-7
3	Wedge Coating	NBR /EPDM EN 681-1
4	Wedge Nut	Copper Alloy
5	Stem	Stainless Steel X20 Cr13
6	Bonnet Gasket	NBR /EPDM EN 681-1
7	Bonnet	Ductile Iron EN- GJS- 500-7
8	O Ring Back Sealing	EPDM/NBR
9	Stem Collar	Stainless Steel / Copper Alloy
10	O-Ring	EPDM/NBR
11	O-Ring	EPDM/NBR
12	Stuffing Nut	Copper Alloy
13	Dust Guard	EPDM/NBR
14	HandWheel	Ductile Iron EN- GJS- 500-7
15	Stem Cap	Ductile Iron EN- GJS-500-7

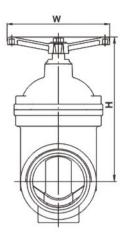
Technical Specification:

Valve Design: DIN 3352 /SABS 664 Face to Face: DIN 3352 /SABS 664 Socket Ends dimensions comply ISO 4422, ISO 4422.2 Hydraulic Test: ISO5208 Shell Test Pressure : 24 bar Seat Test Pressure: 17.6 bar

Features:

Bolted Bonnet Replaceable O-ring Rubber encapsulated wedge Brass Wedge Nut. FBE blue Coated inside and outside 200-300 Micro thickness. Working pressure from -1 to +16 Bar working temperature from −10 to +80°C


Dimensions (mm)


Cine			L	L1	н	114		W.T(kg)	
Size	PIPE DIA.	F5	SABS	LI	н	H1	W	F5	SABS
DN50	63	250	335	77	250	280	160	8	9.5
DN65	75	270	335	80	265	295	160	9	11
DN80	90	280	335	84	300	330	200	10	15
DN100	110	300	355	88	350	380	200	14	18
DN125	125	325	375	91	410	440	250	17	22
DN125	140	325	375	91	410	440	250	20	28
DN150	160	350	405	94	450	480	250	33	38
DN200	200	400	450	100	550	580	320	50	60
DN200	225	400	450	100	550	580	320	55	65
DN250	250	450	450	125	650	680	370	70	80
DN300	315	500	500	140	710	740	370	95	110

** FLUIDO reserve the right to do the technical modification, any technical information kindly contact with FLUIDO directly.

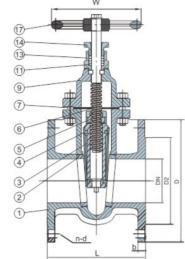
Resilient Seated Gate Valve

PVC Socket Ends

tem No.	Part Name	Specification
1	Body	Ductile Iron EN- GJS- 500-7
2	Wedge	Ductile Iron EN- GJS-500-7
3	Wedge Coating	NBR /EPDM EN 681-1
4	Wedge Nut	Copper Alloy
5	Stem	Stainless Steel X20 Cr13
6	Bonnet Gasket	NBR /EPDM EN 681-1
7	Bonnet	Ductile Iron EN- GJS-500-7
8	O Ring Back Sealing	EPDM/NBR
9	Stem Collar	Stainless Steel / Copper Alloy
10	O-Ring	EPDM/NBR
11	O-Ring	EPDM/NBR
12	Stuffing Nut	Copper Alloy
13	Dust Guard	EPDM/NBR
14	HandWheel	Ductile Iron EN- GJS-500-7
15	Stem Cap	Ductile Iron EN- GJS-500-7

Technical Specification:

Design: DIN 3352 Face to Face:DIN3202 F4 Flanges: EN 1092–2 PN10 Hydraulic test to ISO 5208 Seat Test Pressure: 11 bar Shell Test Pressure: 15 bar


Features:

Bolt Bonnet Solid wedge disc Graphite packing Clockwise closing direction Seat rings are pressed into wedge and body Product color: Blue RAL 5017 Maximum temperature 150°C

Dimensions (mm)

Size	L	D	D1	D2	b	n–d	н	W	W.T(kg)
DN40	140	150	110	84	18	4-19	230	130	11
DN50	150	165	125	99	20	4-19	250	130	12
DN65	170	185	145	118	20	4-19	280	130	16
DN80	180	200	160	132	22	8-19	310	150	19
DN100	190	220	180	156	24	8-19	349	185	26
DN125	200	250	210	184	26	8-19	395	185	36
DN150	210	285	240	211	26	8-23	456	195	51
DN200	230	340	295	266	26	8-23	537	225	62
DN250	250	395	350	319	28	12-23	659	245	127
DN300	270	445	400	370	28	12-23	718	285	165
DN350	290	505	460	429	30	16-23	870	400	225
DN400	310	565	515	480	32	16-28	941	400	369.6
DN450	330	615	565	530	32	20-28	1204	640	426.8
DN500	350	670	620	582	34	20-28	1295	640	572
DN600	390	780	725	682	36	20-31	1478	640	809.6

Material List

Item	Part Name	Material		
1	Body	EN-GJL-250		
2	Seat Ring	Brass		
3	Wedge	EN-GJL-250		
4	Wedge Ring	Brass		
6	Stem	AISI 420		
7	Bonnet Gasket	Graphite		
9	Bonnet	EN-GJL-250		
11	Packing	Graphite		
13	Stuffing Box	EN-GJL-250		
14	Gland Follower	EN-GJL-250		

FLUIDO

Technical Specification:

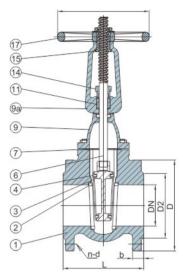
Design: DIN 3352 Face to Face: DIN3202 F4 Flanges: EN 1092–2 PN10 Hydraulic test to ISO 5208 Seat Test Pressure: 11 bar Shell Test Pressure: 15 bar

Features:

Bolt Bonnet Solid wedge disc Outside screw and yoke Clockwise closing direction Graphite packing Seat rings are pressed into wedge and body Product color: Blue RAL 5017 Maximum temperature 150°C

Dimensions (mm)

Size	L	D	D1	D2	b	n–d	(H)	W	W.T(kg)
DN40	140	150	110	84	18	4-19	340	180	13
DN50	150	165	125	99	20	4-19	354	180	14
DN65	170	185	145	118	20	4-19	390	180	18.5
DN80	180	200	160	132	22	8–19	435	200	25.1
DN100	190	220	180	156	24	8–19	545	200	32.3
DN125	200	250	210	184	26	8-19	625	250	44.6
DN150	210	285	240	211	26	8-23	750	280	59.2
DN200	230	340	295	266	26	8-23	980	300	88
DN250	250	395	350	319	28	12-23	1130	360	138
DN300	270	445	400	370	28	12-23	1330	400	177.5
DN350	290	505	460	429	30	16-23	1533	450	240
DN400	310	565	515	480	32	16-28	1905	450	420
DN450	330	615	565	530	32	20-28	2072	640	485
DN500	350	670	620	582	34	20-28	2302	640	650
DN600	390	780	725	682	36	20-31	2650	900	920


DIN 3352 F4

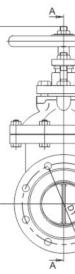
Rising Stem Solid Wedge Gate Valve

CO..LTD

DIN 3352 F4

Material List

Item	Part Name	Material		
1	Body	EN-GJL-250		
2	Seat Ring	Brass		
3	Wedge	EN-GJL-250		
4	Wedge Ring	Brass		
6	Stem	AISI 420		
7	Bonnet Gasket	Graphite		
9	Bonnet	EN-GJL-250		
9a	Yoke	EN-GJL-250		
11	Packing	Graphite		
14	Gland Follower	EN-GJS-500-7		



Rising Stem Solid Wedge Gate Valve

ANSI 125/150

Technical Specification:

Design: MSS SP-70 Face to Face ANSI B16.10 Flanges: ANSI B16.1 Hydraulic test to MSS SP-702 Seat Test Pressure: 220 Psi Shell Test Pressure: 350 Psi

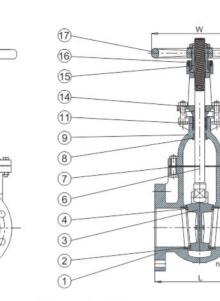
Features:

Bolt bonnet Solid wedge Graphite packing Clockwise closing direction Gland flange has two-piece construction Seat rings are pressed into wedge and body Product color: Blue RAL 5017 Maximum temperature 178°C

Dimensions (mm)

Size	L	D	D1	b	n–d	н	W	W.T(kg)
11/2"	165.1	127	98.6	14.2	4-16	400	178	18
2	177.8	152	120.7	15.8	4-19	405	178	21.5
2 1/2"	190.5	178	139.7	17.5	4-19	415	178	23.5
3"	203.2	191	152.4	19	4-19	486	190	28.4
4"	228.6	229	190.5	23.9	8-19	632	250	48.2
5"	254.0	254	215.9	23.9	8-22	710	300	68.0
6	266.7	279	241.3	25.4	8-22	842	300	81.8
8"	292.1	343	298.5	28.5	8-22	1100	356	135.0
10"	330.2	406	362	30.2	12-25	1228	400	213.2
12"	355.6	483	431.8	31.8	12-25	1373	457	313.6
14"	381.0	533	476.3	35	12-29	1595	508	400.0
16"	406.4	597	539.8	36.6	16-29	1900	558	610.0
18"	431.8	635	577.9	39.6	16-32	2210	610	800.0
20"	457.2	699	635	42.9	20-32	2600	610	980.0
24"	508.0	813	749.3	47.8	20-35	3040	762	1320.0
30"	609.6	984	914.4	53.9	28-35	3400	900	2836.0
36"	711.2	1168	1086	60.5	32-41	3950	900	3500.0

Technical Specification:


Design: MSS SP-70 Face to Face ANSI B16.10 Flanges: ANSI B16.1 Hydraulic test to MSS SP-70 Seat Test Pressure: 220 Psi Shell Test Pressure: 350 Psi

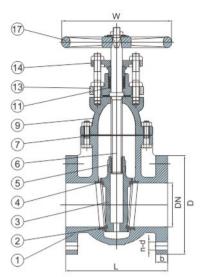
Features:

Solid wedge Back seating design Outside screw and yoke Stem nut assembled downward Gland flange has two-piece construction Clockwise closing direction Seat rings are pressed into wedge and body Product color: Blue RAL 5017 Maximum temperature 178°C

Dimensions (mm)

Size		D	D1	b	n–d	н	W	W.T(kg)
11/2"	165.1	127	98.6	14.2	4-16	400	178	18.0
2	177.8	152	120.7	15.8	4-19	405	178	22.0
2 1/2"	190.5	178	139.7	17.5	4-19	415	178	24.1
3"	203.2	191	152.4	19	4-19	486	190	29.5
4"	228.6	229	190.5	23.9	8-19	632	250	53.2
5"	254.0	254	215.9	23.9	8-22	710	300	80.0
6	266.7	279	241.3	25.4	8-22	842	300	95.8
8"	292.1	343	298.5	28.5	8-22	1100	356	140.0
10"	330.2	406	362	30.2	12-25	1228	400	251.0
12"	355.6	483	431.8	31.8	12-25	1373	457	365.0
14"	381.0	533	476.3	35	12-29	1595	508	450.0
16"	406.4	597	539.8	36.6	16-29	1900	558	696.0
18"	431.8	635	577.9	39.6	16-32	2210	610	950.0
20"	457.2	699	635	42.9	20-32	2600	610	1089.0
24"	508.0	813	749.3	47.8	20-35	3040	762	1520.0
30"	609.6	984	914.4	53.9	28-35	3400	900	2936.0
36"	711.2	1168	1086	60.5	32-41	3950	900	3600.0

Material List


Item	Part Name	Material
1	Body	ASTM A126B
2	Seat Ring	Bronze B62/ Brass
4	Wedge Ring	Bronze B62/ Brass
6	Stem	AISI 420
7	Bonnet Gasket	Graphite
9	Back Seat	Bronze
12	Packing	Graphite
14	Gland Follower	ASTM A536 65-45-12
15	Stem Nut	Brass
16	Retaining Nut	ASTM A126B

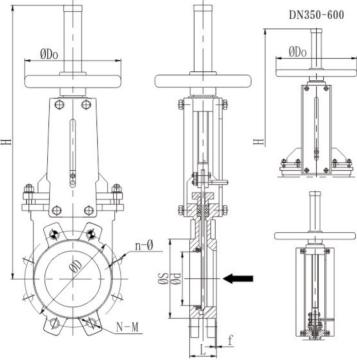
Non-Rising Stem Metal Seated Gate Valve

CO..LTD

ANSI 125/150

Material List

Item	Part Name	Material
1	Body	ASTM A126B
2	Seat Ring	Bronze B62/ Brass
3	Wedge	ASTM A126B
4	Wedge Ring	Bronze B62/ Brass
6	Stem	AISI 420
7	Bonnet Gasket	Graphite
12	Packing	Graphite
13	Stuffing Box	ASTM A126B
21	Packing Gland	Brass
14	Gland Follower	ASTM A536 65-45-12



Rising stem knife valve

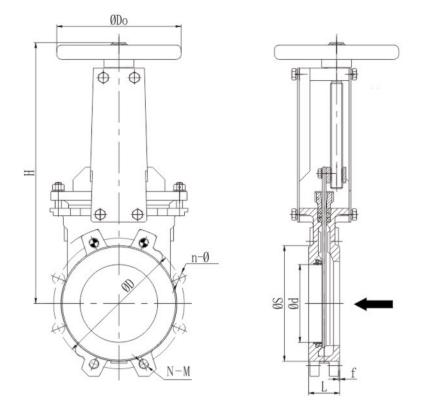
PN10/150LB/JIS 10K/AS 2129

Features:

The GKU and GKO can easily with actuators and related automation accessories . High performance seat system is easily be removed for seat change. Scraper on request

FLUIDO knife gate valve GKO can be used within a wide range of applications on both dry and wet media such as pulp stock up to 7% concentrations, sludge, biomass, ash, granulate and different kinds of waste.

PN10


Dimensions (mm)

d	L	D	0	14				10100
		U			N-M	n-Φ	Do	Н
50	48	125	92	2	4-M16	/	200	415
65	48	145	110	2	4-M16	/	200	435
80	50	160	127	2	4-M16	4– φ 18	200	465
100	50	180	153	2	4-M16	4- φ 18	200	500
125	57	210	182	2	4-M16	4– φ 18	200	565
150	60	240	207	2	4-M20	4- q 22	300	706
200	60	295	260	2	4-M20	4- q 22	300	805
250	70	350	320	2	6-M20	6- q 22	350	975
300	70	400	369	2	6-M20	6- q 22	350	1120
336	76	460	413	2	8-M20	8- q 22	500	1320
385	89	515	470	2	8-M24	8- q 27	500	1445
438	89	565	531	2	12-M24	8- q 27	500	1630
489	110	620	573	2	12-M24	8- q 27	500	1790
570	110	725	646	2	12-M27	8- q 30	500	2050
	80 100 125 200 250 300 336 385 438 438	80 50 100 50 125 57 150 60 200 60 250 70 300 70 336 76 385 89 438 89 489 110	80 50 160 100 50 180 125 57 210 150 60 240 200 60 295 250 70 350 300 70 400 336 76 460 385 89 515 438 89 565 489 110 620	80 50 160 127 100 50 180 153 125 57 210 182 150 60 240 207 200 60 295 260 250 70 350 320 300 70 400 369 336 76 460 413 385 89 515 470 438 89 565 531 489 110 620 573 570 110 725 646	80 50 160 127 2 100 50 180 153 2 125 57 210 182 2 150 60 240 207 2 200 60 295 260 2 250 70 350 320 2 300 70 400 369 2 336 76 460 413 2 385 89 515 470 2 438 89 565 531 2 489 110 620 573 2 570 110 725 646 2	80 50 160 127 2 4-M16 100 50 180 153 2 4-M16 125 57 210 182 2 4-M16 125 57 210 182 2 4-M16 150 60 240 207 2 4-M20 200 60 295 260 2 4-M20 250 70 350 320 2 6-M20 300 70 400 369 2 6-M20 336 76 460 413 2 8-M24 438 89 515 470 2 8-M24 438 89 565 531 2 12-M24 489 110 620 573 2 12-M24	80 50 160 127 2 4-M16 4- ϕ 18 100 50 180 153 2 4-M16 4- ϕ 18 125 57 210 182 2 4-M16 4- ϕ 18 150 60 240 207 2 4-M20 4- ϕ 22 200 60 295 260 2 4-M20 4- ϕ 22 200 60 295 260 2 4-M20 4- ϕ 22 200 70 350 320 2 6-M20 6- ϕ 22 300 70 400 369 2 6-M20 6- ϕ 22 336 76 460 413 2 8-M20 8- ϕ 27 385 89 515 470 2 8-M24 8- ϕ 27 438 89 565 531 2 12-M24 8- ϕ 27 489 110 620 573 2 12-M24 8- ϕ 27	805016012724-M164-\$\$2001005018015324-M164-\$\$2001255721018224-M164-\$\$2001506024020724-M204-\$\$3002006029526024-M204-\$\$3002507035032026-M206-\$\$3503007040036926-M206-\$\$3503367646041328-M208-\$\$5003858951547028-M248-\$\$50043889565531212-M248-\$\$500489110620573212-M248-\$\$500570110725646212-M278-\$30500

Size which marked 🕷 , the face to face in table (L) is standard length. For alternative length, please consult the manufacturer.

Features:

The GKU and GKO can easily with actuators and related automation accessories . High performance seat system is easily be removed for seat change. Scraper on request

Dimensions (mm)

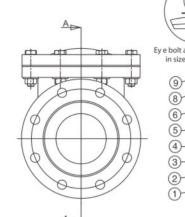
DN	d	L	D			N-M	n-Φ	Do	Н
※ 50	50	48	125	92	2	4-M16	/	200	289
65	65	48	145	110	2	4-M16	/	200	312
80	80	50	160	127	2	4-M16	4– ф 18	200	340
100	100	50	180	153	2	4-M16	4– 418	200	375
※125	125	57	210	182	2	4-M16	4– 18	200	414
150	150	60	240	207	2	4-M20	4-φ22	300	475
200	200	60	295	260	2	4-M20	4- 0 22	300	567
250	250	70	350	320	2	6-M20	6- ¢ 22	350	686
300	300	70	400	369	2	6-M20	6- ¢22	350	790
*350	336	76	460	413	2	8-M20	8- <i>\</i> 22	500	905
※ 400	385	89	515	470	2	8-M24	8- <i>\</i> 27	500	1013
※ 450	438	89	565	531	2	12-M24	8- \$ 27	500	/
500	489	110	620	573	2	12-M24	8- <i>\</i> 27	500	/
600	570	110	725	646	2	12-M27	8- \$ 30	500	1

Size which marked % , the face to face in table (L) is standard length. For alternative length, please consult the manufacturer.

Non-rising stem knife valve

PN10/150LB/JIS 10K/AS 2129

FLUIDO knife gate valve GKO can be used within a wide range of applications on both dry and wet media such as pulp stock up to 7% concentrations, sludge, biomass, ash, granulate and different kinds of waste.


PN10

Swing Check Valve

DIN 3202 F6

Material List

1

2

3

4

7

9

10

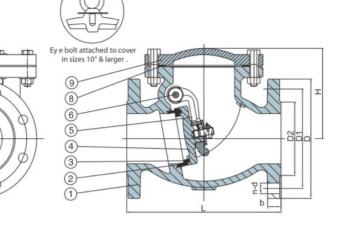
11

Part Name

Seat Ring

Disc Ring

Body


Disc

Hanger

Cover

Hanger Pin

Cover Gasket

GG25

GG25

GGG50

GG25

Brass Bronze

Stainless Steel

Brass/Bronze EPDM/NBR

Graphite With Soft Steel

Technical Specification: Face to Face : DIN3202 F6

Flanges: EN 1092-2 PN16 Hydraulic test to ISO 5208 Seat Test Pressure: 17.6 bar Shell Test Pressure: 24 bar

Features:

Full port Bolted cover Suitable for both horizontal and vertical installation Product color: Blue RAL 5017

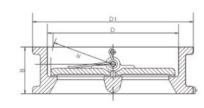
Options

External lever arm and weight FBE coated Inside and outside

Dimensions (mm)

Size	L	D	D1	D2	b	n-d	н	W.T(kg)
DN40	180	150	110	84	18	4-19	110	9.0
DN50	200	165	125	99	20	4-19	130	13.4
DN65	240	185	145	118	20	4-19	140	17.7
DN80	260	200	160	132	22	8-19	150	20.8
DN100	300	220	180	156	24	8-19	160	29.3
DN125	350	250	210	184	26	8-19	190	47.0
DN150	400	285	240	211	26	8–23	210	67.0
DN200	500	340	295	266	30	12-23	250	118.7
DN250	600	405	355	319	32	12-28	310	171.9
DN300	700	460	410	370	32	12-28	340	232.5
DN350	800	520	470	429	36	16-28	450	330.0
DN400	900	580	525	480	38	16-31	520	460.0
DN450	1000	640	585	548	40	20-31	550	580.0
DN500	1100	715	650	609	42	20-34	590	700.0
DN600	1300	840	770	720	48	20-37	680	780.0

* Request for special characteristic is available. FLUIDO reserves the right to modify dimensions, materials, or design on products without prior notice.

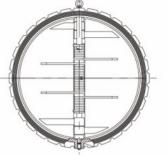


FLUIDO

Standard:

Size: DN40-DN1200 (1.5"-48") Design and manufacture: BS5153, EN12334 Test and inspection: DIN3230Part3, API598, EN12266-1 Face toface(end to end): BS5155, EN558-1JSO5752-16 Flanged connection QIN 2501 PN10&PN16 BS4504 PN10&PN16 ASME B16.1 125LB&150LB

Dimensions (mm)


SIZE	AS2192 E	ASME 150LB	PN10	PN16	ΦD	в	R	
SIZE	ΦD1	ΦD1	ΦD1	ΦD1	ΨD	D	n	Г
DN40	84	82	92	92	57	43	25	19
DN50	96	101	107	107	65	43	28.8	19
DN65	109	120	127	127	80	46	36.1	20
DN80	128	133	142	142	94	64	43.4	28
DN100	160	171	162	162	117	64	52.8	27
DN125	192	194	192	192	145	70	65.7	30
DN150	218	219	218	218	170	76	78.6	31
DN200	270	276	273	273	224	89	104.4	33
DN250	334	337	328	328	265	114	127	50
DN300	380	407	378	378	310	114	148.3	43
DN350	444	447	438	438	360	127	172.4	45
DN400	495	510	489	489	410	140	197.4	52
DN450	558	546	539	539	450	152	217.8	58
DN500	615	603	592	616	505	152	241	58
DN600	723	717	694	733	624	178	295.4	73
DN700	812	720	810	804	720	229	338.5	98
DN800	948	825	916	909	825	241	385.5	100
DN900	1056	927	1017	1011	927	241	428.5	100
DN1000	1136	1158	1124	1124	1030	300	491.5	110
DN1200	1370	1380	1340	1340	1200	350	586	148

Dual Plate Wafer Check Valve

DN40-DN500

DN600-DN1200

Material List

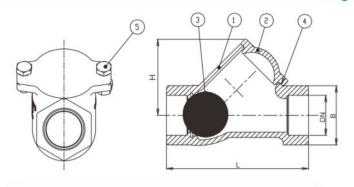
Name	Material	Specification ASTM
Body	Cast Iron Ductile Iron Carbon Steel Stainless Steel	ASTM A126B, ASTM A536 A216 WCB, A351 CF8M A351 CF8
Disc	Plated Ductile Iron Aluminum Bronze Stainless Steel	ASTM A536 B148-95400 A351 CF8M A351 CF8
Stem	Stainless Steel NBR(NITRILE)	A276-410 A276-304 A276-316
Seat	EPDM, NEOPRENE(CR) VITON(FKM) NATURAL RUBBER(NR)	

Ball Check Valves

Ductile Iron

Ductile Iron

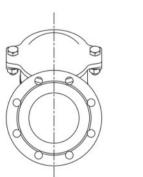
NBR EPDM


Stainless Steel

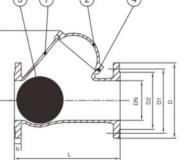
Steel+NBR Steel+EPDM

DIN3356

THREADED BALL CHECK VALVE Fig:CB100S

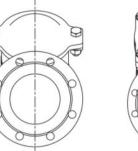


Size	L	В	Н	W.T(kg)
DN32	135	50	72	2
DN40	145	60	85	2
DN50	175	70	100	3
DN65	200	90	125	5
DN80	248	108	160	7.5


APPLICATIONS

Pumping stations for clean, sewage water and loaded or viscous fluids.

FLANGED BALL CHECK VALVE Fig:CB100F



DN40-DN150

DN200-DN300

01-2	Size L		EN 1092-2 PN16				AS 2129	TABLE E	15	н	W.T(kg)	
Size	L	D	D1	D2	n-d	D	D1	D2	n-d	b	п	W. I (Kg)
DN40	180	150	110	84	4-19	150	98	78	4-14	19	90	6.0
DN50	200	165	125	102	4-19	165	114	90	4-18	19	100	6.5
DN65	240	185	145	122	4-19	185	127	103	4-18	19	125	11.0
DN80	260	200	160	138	8-19	200	146	122	4-18	19	136	14.4
DN100	300	220	180	158	8-19	220	178	154	8-18	19	185	20.0
DN125	350	250	210	188	8–19	250	210	186	8–18	19	196	30.4
DN150	400	285	240	212	8-23	285	235	207	8-22	19	265	42.3
DN200	500	340	295	268	12-23	340	292	264	8-22	20	340	73.5
DN250	600	405	355	320	12-27	405	356	328	12-22	22	420	128.0
DN300	700	460	410	378	12-27	460	406	374	12-26	24.5	480	180.0

JUF								
	3	1	2		4			
Ì	\uparrow	R		/	/			
т	R		No.	4	_			
ţ					- N	D2	DI	
	R	10		T/				

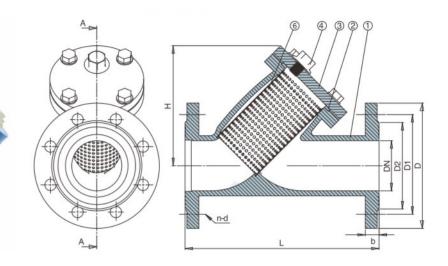
Material List

1 2

3

4

5


Body

Ball

Bonnet

Bolting

Bonnet GasKet

Technical Specification:

Face to Face : DIN3202 F1 Flanges: EN 1092-2 PN16 Hydraulic test to ISO 5208 Shell Test Pressure: 24 bar

Features:

Y-Pattern Stainless Steel Screen Bolted Cover Flanged Ends FBE Coated

Item	Part Name	Material
1	Body	GG25 /GGG50
2	Cover Gasket	Graphite With Soft Steel EPDM/NBR
3	Cover	GG25 /GGG50
4	Plug	Zine Steel BSPT Galvanized flat head bolt
5	Bolt&nut	Galvanized stud bolt Stain less Steel SS Wire Screen
6	Screen	SS Perforated Mesh

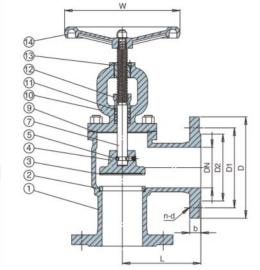
Product color: Blue, RAL 5017

Dimensions (mm)

Size		D	D1	D2	b	n–d	Н	Plug	W.T(kg)
DN15	130	95	65	46	14	4-14	65	1/4"	2.0
DN20	150	105	75	56	16	4-14	70	1/4"	2.3
DN25	160	115	85	65	16	4-14	80	1/4"	3.2
DN32	180	140	100	76	18	4-19	90	1/4"	5.0
DN40	200	150	110	84	18	4-19	135	1/2"	6.5
DN50	230	165	125	99	20	4-19	150	1/2"	8.7
DN65	290	185	145	118	20	4-19	160	1/2"	12.0
DN80	310	200	160	132	22	8–19	200	1/2"	19.0
DN100	350	220	180	156	24	8-19	240	1/2"	27.0
DN125	400	250	210	184	26	8–19	290	3/4"	40.0
DN150	480	285	240	211	26	8–23	330	3/4"	58.0
DN200	600	340	295	266	30	12-23	380	3/4"	86.0
DN250	730	405	355	319	32	12-28	480	1"	127.0
DN300	850	460	410	370	32	12-28	550	1"	200.0
DN350	980	520	470	429	36	16-28	680	2"	320.0
DN400	1100	580	525	480	38	16-31	780	2"	420.0
DN450	1200	640	585	548	40	20-31	830	2"	620.0
DN500	1250	715	650	609	42	20-34	910	2"	780.0

DIN/BSY strainer

Material List



Angle Globe Valve

DIN3356

Technical Specification:

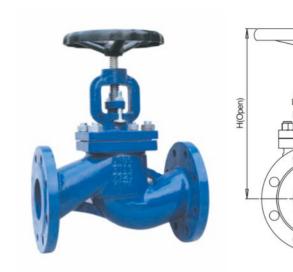
Design: DIN 3356 Face to Face DIN3202 F1 Flanges: EN 1092-2 PN16 Hydraulic test to ISO 5208 Seat Test Pressure: 17.6 bar Shell Test Pressure: 24 bar

Features:

Bolt bonnet Outside acrew and yoke Clockwise closing direction Graphite packing Product color: Blue RAL 5017

Material List

Item	Part Name	Material
1	Body	GG25
2	Seat Ring	Stainless Steel Brass
3	Disc Ring	Stainless Steel Brass
4	Disc	GG25/ Carbon Steel
7	Stem	SS AISI 420
9	Bonnet Gasket	Graphite With Soft Steel
10	Bonnet	GG25
11	Packing	Graphite


Dimensions (mm)

Size		D	D1	D2	b	n–d	н	W	W.T(kg)
DN15	90	95	65	45	14	4-14	200	120	3.5
DN20	95	105	75	58	16	4-14	220	120	4.2
DN25	100	115	85	68	16	4-14	225	120	5.1
DN32	105	140	100	78	18	4-18	250	120	7.3
DN40	115	150	110	88	18	4-18	270	160	9
DN50	125	165	125	102	20	4-18	290	200	14.6
DN65	145	185	145	122	20	4-18	320	200	19.8
DN80	155	200	160	138	22	8–18	365	200	23.6
DN100	175	220	180	158	24	8-18	410	240	31.4
DN125	200	250	210	188	26	8-18	460	240	46
DN150	225	285	240	212	26	8-22	525	280	58.4
DN200	275	340	295	268	30	12-22	685	360	113.8
DN250	325	405	355	320	32	12-26	830	400	143.6
DN300	375	460	410	378	32	12-26	925	450	176.5

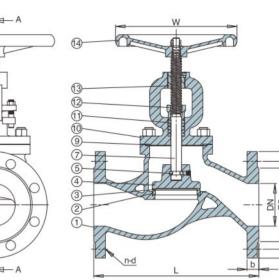
* Request for special characteristic is available. FLUIDO reserves the right to modify dimensions, materials, or design on products without prior notice.

Technical Specification:

Design: DIN 3356 Face to Face : DIN3202 F1 Flanges: DIN 2533 PN16 Hydraulic test to ISO 5208 Seat Test Pressure: 17.6 bar Shell Test Pressure: 24 bar

Features:

Bolt bonnet Clockwise closing direction Graphite packing Seat rings are pressed into body Product color: Blue RAL 5017


Dimensions (mm)

Size		D	D1	D2	b	n-d	н	W	W.T(kg)
DN15	130	95	65	45	14	4-14	200	120	3.4
DN20	150	105	75	58	16	4-14	220	120	4.7
DN25	160	115	85	68	16	4-14	225	120	5.1
DN32	180	140	100	78	18	4-18	250	120	7.6
DN40	200	150	110	88	18	4-18	270	160	9.5
DN50	230	165	125	102	20	4-18	290	200	13.7
DN65	290	185	145	122	20	4-18	320	200	18.5
DN80	310	200	160	138	22	8–18	365	200	22.1
DN100	350	220	180	158	24	8-18	410	240	34
DN125	400	250	210	188	26	8–18	460	240	47.8
DN150	480	285	240	212	26	8-22	525	280	65.9
DN200	600	340	295	268	30	12-22	685	360	128.8
DN250	730	405	355	320	32	12-26	830	400	196
DN300	850	460	410	378	32	12-26	925	450	245

* Request for special characteristic is available. FLUIDO reserves the right to modify dimensions, materials, or design on products without prior notice.

Globe Valve

DIN3356

Item	Part Name	Material
1	Body	GG25
2	Seat Ring	Stainless Steel Brass
3	Disc Ring	Stainless Steel Brass
4	Disc	GG25/ Carbon Steel
7	Stem	SS AISI 420
9	Bonnet Gasket	Graphite With Soft Steel
10	Bonnet	GG25
11	Packing	Graphite

API OS&Y Gate Valve

Standard and Specification

Design standard	Face to face	Flanges connection	Welding connection	Testing standard	Pressure-Temp
API 6D ASME B16.34	ANSI B16.10	ASME B16.5 ASME B16.47 MSS-SP 44	ASME B16.25	API 598	ANSI B16.34

Performance specification

Nominal Pressure	Shell test	Sealing test	Top seal test	Air seal test
150LB	3.0	2.2	2.2	
300LB	7.5	5.5	5.5	0.6
600LB	16.5	12.1	12.1	0.0
900LB	22.5	16.5	16.5	

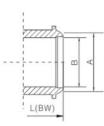
Main part materials and property

Body Bonnet disc	Stem	Seat	Gasket	Packing	Working temperature	Suitable medium
WCB					-	
LCB						
WC6			304+Flexible			Water
WC9	2Cr13	13Cr	Graphite	Flexible		Steam Oil
C5	F304	STELLITE F304	316+Flexibl	Graphite	–196℃~565℃	Gas
CF8	F316	F316	Graphite	PTFE		Nitric acid
CF3			08 Soft Steel			Acetic acid.
CF8M						
CF3M						

Main external and connection dimension (150Lb)

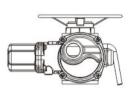
in	DN	L(RF)	L(BW)	D	D1	b	n−Φd	А	В	н	W
2"	50	178	216	150	120.5	14	4-Φ19	60	52	325	200
21/2"	65	191	241	180	139.5	16	4-Φ19	75	63	350	200
3"	80	203	283	190	152.5	17.5	4-Φ19	91	78	380	250
4"	100	229	305	230	190.5	22	8-Φ19	117	102	460	250
5"	125	254	254	255	216	22	8-Φ22	144	128	630	250
6"	150	267	403	280	241.5	24	8-Φ22	172	154	652	300
8"	200	292	419	345	298.5	27	8-Φ22	223	203	765	350
10"	250	330	457	405	362	28.6	12-Φ25	278	255	895	400
12"	300	356	502	485	432	30	12-Φ25	329	305	1080	450
14"	350	381	572	535	476	33.4	12 -Φ 29	362	337	1295	500
16"	400	406	610	595	540	35	16-Φ29	413	387	1435	600
18"	450	432	660	635	578	38	16- Φ 32	464	438	1625	600
20"	500	457	711	700	635	41	20- Φ 32	516	489	1830	650
24"	600	508	813	815	749.5	46	20- Φ 35	619	591	2175	700
26"	650	559	864	786	744	41	36- Φ 29	670	635	2235	750
28"	700	610	914	837	795	44.5	40- Φ 32	721	686	2310	800
30"	750	610	914	888	846	44.5	44 -Φ 33	772	737	2695	850
32"	800	660	965	941.3	900	46	48- Φ 23	825	979	3708	1
36"	900	711	1016	1057	1009.6	53	44-Φ25	927	900	3924	1
40"	1000	812	/	1175	1120.6	56	44- Φ 25	1080	1000	4318	1

QINGDAO FLUIDO INDUSTRIAL CO.,LTD www.fluidovalve.com www.eathu.com info@eathu.com


API OS&Y Gate Valve

Standard

18 "and above

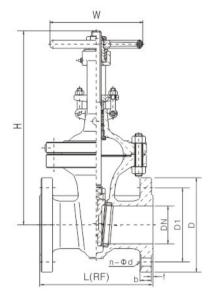


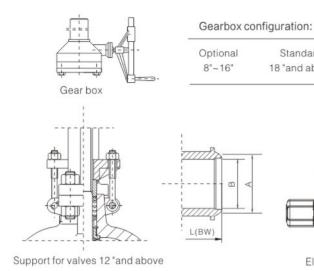
Optional

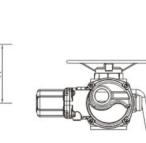
8"~16"

Gearbox configuration:

Electric actuator






API OS&Y Gate Valve

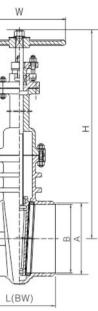
Standard

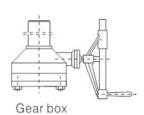
18 "and above

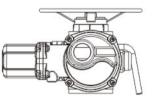
Electric actuator

Main external and connection dimension (300Lb)

in	DN	L(RF)	L(BW)	D	D1	b	n−Φd	А	в	н	W
2"	50	216	216	165	127.0	21	8-Φ19	60	52	330	200
21/2"	65	241	241	191	149.4	24	8-Φ22	75	63	370	240
3"	80	283	283	210	168.1	27	8-Φ22	91	78	395	300
4"	100	305	305	255	200.2	30	8-Φ22	117	102	470	320
5"	125	381	381	280	235.0	33	8-Φ22	144	128	660	350
6"	150	403	403	320	269.7	35	12-Φ22	172	154	715	400
8"	200	419	419	380	330.2	40	12-Φ25	223	203	815	400
10"	250	457	457	445	387.4	46	16-Φ29	278	255	1005	450
12"	300	502	502	520	450.9	49	16- Φ 32	329	305	1135	500
14"	350	762	762	585	514.5	52	20- Φ 32	362	337	1490	550
16"	400	838	838	650	571.5	56	20- Φ 35	413	387	1580	600
18"	450	914	914	710	628.5	59	24- Φ 35	464	438	2020	650
20"	500	991	991	775	686	62	24- Φ 35	516	489	2230	700
24"	600	1143	1143	915	813	68	24- Φ 41	619	591	2650	750
26"	650	1245	1245	867	803	89	32- Φ 32	670	635	3220	800
28"	700	1346	1346	921	857	89	36- Φ 34	721	686	3380	850
30"	750	1397	1397	991	921	94	36- Φ 36	772	737	3530	900
32"	800	1524	1524	1054	978	103	32 -Φ 41	825	797	1	1
36"	900	1727	1727	1171	1089	103	36- Φ 35	927	900	1	/






Main external and connection dimension (150Lb)

in	DN	L(RF)	L(BW)	D	D1	D2	b	f	n–Φd	А	В	Н	W
	DIN	-()	2(211)			02	, S		n-¢u	~			
2	50	178	178	150	120.5	92	14	2	4-19	60	52	235	200
21/2	65	190	190	180	139.5	105	16	2	4-19	75	63	275	200
3	80	203	203	190	152.5	127	17.5	2	4-19	91	78	285	250
4	100	229	229	230	190.5	157	22	2	8–19	117	102	345	250
5	125	254	254	255	216	186	22	2	8–22	144	128	475	250
6	150	267	267	280	241.5	216	24	2	8-22	172	154	495	300
8	200	292	292	345	298.5	270	27	2	8-22	223	203	575	350
10	250	330	330	405	362	324	28.6	2	12-25	278	255	675	400
12	300	356	356	485	432	381	30	2	12-25	329	305	810	450
14	350	381	381	535	476	413	33.4	2	12-29	362	337	971	500
16	400	406	406	595	540	470	35	2	16-29	413	387	1085	600
18	450	432	432	635	578	533	38	2	16-32	464	438	1225	600
20	500	457	457	700	635	584	41	2	20-32	516	489	1385	650
24	600	508	508	815	749.5	692	46	2	20-35	619	591	1631	700
26	650	559	559	786	744	711	41	2	36-22	670	635	1675	750
28	700	610	610	837	795	762	44.5	2	40-22	721	686	1735	800
30	750	610	610	888	846	813	44.5	2	44-22	772	737	2045	850

API Non-Rising Stem Gate Valve

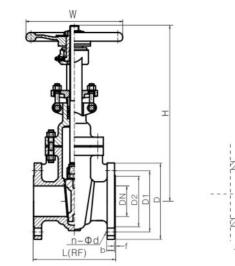
Electric actuator

DIN Gate Valave

Standard and Specification

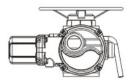
Design standard	Face to face	Flanges connection	Welding connection	Testing standard
DIN 3352	DIN 3202	DIN 2543-2550	DIN 3239	DIN 3230

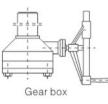
Performance specification


Nominal Pressure	Shell test	Sealing test	Top seal test	Air seal test
1.6	2.4	1.76	1.76	
2.5	3.8	2.75	2.75	
4.0	6.0	4.4	4.4	
6.3	9.5	6.9	6.9	0.6
10.0	15.0	11.0	11.0	
16.0	24.0	17.6	17.6	
20.0	30.0	22.0	22.0	

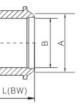
Main part materials and property

Body Bonnet disc	Stem	Gasket	Seat	Working temperature	Suitable medium
1.0619N (GS-C25)					
1.0915 (14Mn)		304+Flexible Graphite	13Cr		Water Steam
1.7337 (16CrMo44)	X20Cr13 X5CrNi18-9 X10CrNiMoTi18-10	316+Flexible Graphite	STELLITE SS304	–196℃–565℃	Oil Gas
1.4301 (X5CrNi18–9)		08 Soft Steel	SS316		Nitric acid Acetic acid.
1.4571 (10CrNiMoTi18–10)					

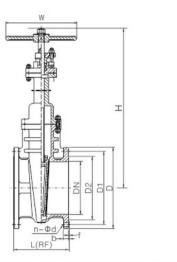


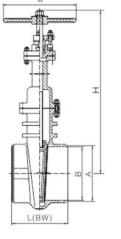

Main external and connection dimension

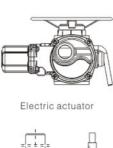
				DIN3352	2-F4 OS&	Y GATE \	ALVE PN16				
DN	L(RF)	D	D1	D2		b	n-Φd	А	В	Н	W
50	150	165	125	99	2	20	4-Φ18	60	52	355	200
65	170	185	145	118	2	20	4-Φ18	75	63	376	200
80	180	200	160	132	2	20	8-Φ18	91	78	435	280
100	190	220	180	156	2	22	8-Φ18	117	102	502	300
125	200	250	210	184	2	22	8-Φ18	144	128	615	320
150	210	285	240	211	2	24	8-Φ22	172	154	675	360
200	230	340	295	266	2	24	12-Φ22	223	203	820	400
250	250	405	355	319	2	26	12-Φ26	278	255	970	450
300	270	460	410	370	2	28	12-Φ26	329	305	1145	500
350	290	520	470	429	2	30	16-Φ26	362	337	1280	550
400	310	580	525	480	2	32	16-Φ30	413	387	1451	600
450	330	640	585	548	2	40	20-Φ30	464	438	1545	650
500	350	715	650	609	2	44	20-Φ33	516	489	1678	700
600	390	840	770	720	2	54	20-Φ36	619	591	1875	800
700	430	910	840	794	5	40	24-Φ36	721	695	2085	900
800	470	1025	950	901	5	42	24-Φ39	825	797	2405	950
900	510	1125	1050	1001	5	44	28-Φ39	927	899	2950	100
1000	550	1255	1170	1112	5	46	28-Φ42	-	-	3244	100
				DIN3352	2-F4 OS&	Y GATE \	ALVE PN25				
DN	L(RF)	D	D1	D2		b	n-Φd	А	В	Н	W
50	150	165	125	99	2	20	4-Φ18	60	52	355	200
65	170	185	145	118	2	22	8-Φ18	75	63	376	200
80	180	200	160	132	2	24	8-Φ18	91	78	435	280
100	190	235	190	156	2	24	8-Φ22	117	102	502	300
125	200	270	220	184	2	26	8-Φ26	144	128	615	320
150	210	300	250	211	2	28	8-Φ26	172	154	675	360
200	230	360	310	274	2	30	12-Φ26	223	203	820	400
250	250	425	370	330	2	32	12-Φ30	278	255	970	450
300	270	485	430	389	2	34	16-Φ30	329	305	1145	500
350	290	555	490	448	2	38	16- Φ 33	362	337	1280	550
400	310	620	550	503	2	40	16- Φ 36	413	387	1451	600
450	330	670	600	548	2	46	20-Φ36	464	438	1545	650
500	350	730	660	609	2	48	20-Φ36	516	489	1678	700
600	390	845	770	720	2	58	20- Φ 39	619	591	1875	800
700	430	960	875	820	5	50	24-Φ42	721	695	2085	900
800	470	1085	990	928	5	54	24-Φ48	825	797	2405	950
900	510	1185	1090	1028	5	58	28-Φ48	927	899	2950	100
1000	550	1320	1210	1140	5	62	28- Φ 55	-	-	3244	100

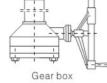

DIN Gate Valave

Electric actuator









DIN Non-Rising Stem Gate Valve

Main external and connection dimension

Manres		unia de					GATE VALVE F	PN16			
DN	L(RF)	D	D1	D2		b	n-Φd	А	В	Н	W
50	150	165	125	99	2	20	4-Φ18	60	52	265	200
65	170	185	145	118	2	20	4-Φ18	75	63	282	200
80	180	200	160	132	2	20	8-Φ18	91	78	325	280
100	190	220	180	156	2	22	8-Φ18	117	102	376	300
125	200	250	210	184	2	22	8-Φ18	144	128	462	320
150	210	285	240	211	2	24	8-Φ22	172	154	506	360
200	230	340	295	266	2	24	12-Φ22	223	203	615	400
250	250	405	355	319	2	26	12-Φ26	278	255	727	450
300	270	460	410	370	2	28	12-Φ26	329	305	858	500
350	290	520	470	429	2	30	16-Φ26	362	337	960	550
400	310	580	525	480	2	32	16-Φ30	413	387	1085	600
450	330	640	585	548	2	40	20-Φ30	464	438	1158	650
500	350	715	650	609	2	44	20-Φ33	516	489	1258	700
600	390	840	770	720	2	54	20- Φ 36	619	591	1405	800
700	430	910	840	794	5	40	24-Φ36	721	695	1563	900
800	470	1025	950	901	5	42	24-Φ39	825	797	1803	950
900	510	1125	1050	1001	5	44	28- Φ 39	927	899	2215	1000
1000	550	1255	1170	1112	5	46	28- Φ 42	-	-	2432	1000
			DIN3	3352-F4 NG	DN-RISIN	IG STEM	GATE VALVE F	PN25			
DN	LRF	D	D1	D2	f	b	n−Φd	А	В	Н	W
50	150	165	125	99	2	20	4-Φ18	60	52	265	200
65	170	185	145	118	2	22	8-Φ18	75	63	282	200
80	180	200	160	132	2	24	8-Φ18	91	78	325	280
100	190	235	190	156	2	24	8-Φ22	117	102	376	300
125	200	270	220	184	2	26	8-Φ26	144	128	462	320
150	210	300	250	211	2	28	8-Φ26	172	154	506	360
200	230	360	310	274	2	30	12-Φ26	223	203	615	400
250	250	425	370	330	2	32	12-Φ30	278	255	727	450
300	270	485	430	389	2	34	16-Φ30	329	305	858	500
350	290	555	490	448	2	38	16-Φ33	362	337	960	550
400	310	620	550	503	2	40	16-Φ36	413	387	1085	600
450	330	670	600	548	2	46	20-Φ36	464	438	1158	650
500	350	730	660	609	2	48	20-Φ36	516	489	1258	700
600	390	845	770	720	2	58	20- Φ 39	619	591	1405	800
700	430	960	875	820	5	50	24-Φ42	721	695	1563	900
800	470	1085	990	928	5	54	24-Φ48	825	797	1803	950
900	510	1185	1090	1028	5	58	28-Φ48	927	899	2215	1000
1000	550	1320	1210	1140	5	62	28-Φ55	_	-	2432	1000

Standard and Specification

Design standard	Face to face	Flanges connection	Welding connection	Testing standard	Pressure-Temp
API6D ASME B16.34	ANSI B16.10	ASMEB16.5	ASMEB16.25	API 598	ANSI B16.34

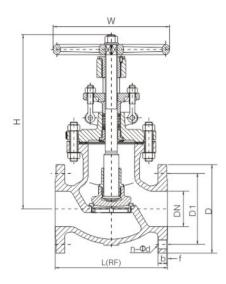
Performance specification

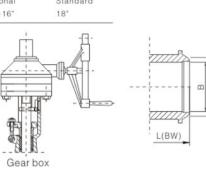
Nominal Pressure	Shell test	Sealing test	Top seal test	Air seal test
150LB	3.0	2.2	2.2	
300LB	7.5	5.5	5.5	
600LB	15.0	11.0	11.0	0.6
900LB	22.5	16.5	16.5	0.0
1500LB	39.0	28.6	28.6	
2500LB	63.0	46.2	46.2	

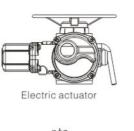
Main part materials and property

Body Bonnet	Stem	Seat	Sealing shim	Packing	Working temperature	Suitable medium
WCB						
LCB		13Cr STELLITE F304 F316				
WC6			304+Flexible Graphite 316+Flexible			Water Steam
WC9	2Cr13 F304			Flexible Graphite	-196℃-565℃	Oil
C5	F316		Graphite	PTFE	-190 C-505 C	Gas Nitric acid
CF8			08 Soft Steel			Acetic acid.
CF3						
CF8M						
CF3M						

API Globe Valve




36



API Globe Valve

Impact handwheel for valves 10 'and above Gearbox configuration: Optional Standard 14"~16"

For 16 "and above

Main external and connection dimension(150LB)

in	DN	L(RF)	L(BW)	D	D1	b	n−Φd	А	В	н	W
2"	50	203	203	150	120.5	14	4-Φ19	60	52	368	200
21/2"	65	216	216	180	139.5	16	4-Φ19	75	63	687	200
3"	80	241	241	190	152.5	17.5	4-Φ19	91	78	410	250
4"	100	292	292	230	190.5	22	8-Φ19	117	102	454	250
5"	125	356	356	255	216	22	8-Φ22	144	128	455	355
6"	150	400	400	280	241.5	24	8-Φ22	172	154	540	355
8"	200	495	495	345	298.5	27	8-Φ22	223	203	650	450
10"	250	622	622	405	362	28.6	12-Φ25	278	255	800	450
12"	300	698	698	485	432	30	12-Φ25	329	305	1230	500
14"	350	787	787	535	476	33.4	12-Φ29	362	337	1450	600
16"	400	914	914	595	540	35	16-Φ29	413	387	1645	600

Main external and connection dimension(300LB)

in	DN	LRF	LBW	D	D1	b	n–Φd	A	В	н	W
2"	50	267	267	165	127.0	21	8-Φ19	60	52	399	200
21/2"	65	292	292	190	149.4	24	8-Φ22	75	63	438	250
3"	80	318	318	210	168.1	27	8-Φ22	91	78	464	280
4"	100	356	356	255	200.2	30	8-Φ22	117	102	565	350
5"	125	400	400	280	235.0	33	8-Φ22	144	128	614	400
6"	150	444	444	320	269.7	35	12-Φ22	172	154	717	450
8"	200	559	559	380	330.2	40	12-Φ25	223	203	930	450
10"	250	622	622	445	387.4	46	16-Φ29	278	255	1012	500
12"	300	711	711	520	450.9	49	16-Φ32	329	305	1231	500

Standard and Specification

Design standard	Face to face	Flanges connection	Welding connection	Testing standard
DIN 3356	DIN 3202	DIN 2543-2550	DIN 3239	DIN 3230

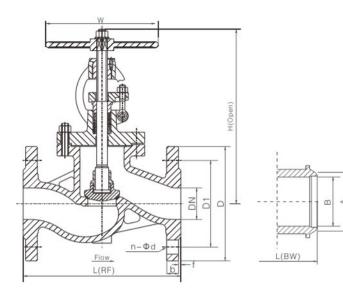
Performance specification

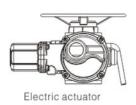
Nominal Pressure	Shell test	Sealing test	Top seal test	Air seal test
1.6	2.4	1.76	1.76	
2.5	3.8	2.75	2.75	
4.0	6.0	4.4	4.4	
6.3	9.5	6.9	6.9	0.6
10.0	15.0	11.0	11.0	
16.0	24.0	17.6	17.6	
20.0	30.0	22.0	22.0	

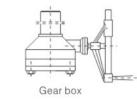
Main part materials and property

Body Bonnet disc	Stem	Gasket	Seat	Working temperature	Suitable medium
1.0619N (GS-C25)					
1.0915 (14Mn)	X20Cr13 X5CrNi18-9 X10CrNiMoTi18-10	304+Flexible Graphite	13Cr		Water Steam
1.7337 (16CrMo44)		316+Flexible Graphite	STELLITE SS304	−196°C−565°C	Oil Gas
1.4301 (X5CrNi18-9)		08 Soft Steel	SS316		Nitric acid Acetic acid
1.4571 (X10CrNiMoTi18-10)					

DIN Globe Valve




QINGDAO FLUIDO INDUSTRIAL CO.,LTD www.fluidovalve.com www.eathu.com info@eathu.com


38

DIN Globe Valve

E

L(RTJ)

Main external and connection dimension(PN16)

DN	L(RF)	L(BW)	D	D1	b	n−Φd	А	В	н	w
50	230	230	165	125	18	4-Φ18	60	52	350	200
65	290	290	185	145	18	4-Φ18	75	63	370	200
80	310	310	200	160	20	8-Φ18	91	78	400	280
100	350	350	220	180	20	8-Φ18	117	102	415	300
125	400	400	250	210	22	8-Φ18	144	128	460	320
150	480	480	285	240	22	8-Φ22	172	154	510	360
200	600	600	340	295	24	12-Φ22	223	203	710	400
250	730	730	405	355	26	12-Φ26	278	255	785	450
300	850	850	460	410	28	12-Φ26	329	305	925	500
350	980	980	520	470	30	16-Φ26	362	337	980	550
400	1100	1100	580	525	32	16-Φ30	413	387	1030	600

Main external and connection dimension(PN25)

DN	LRF	LBW	D	D1	b	n−Φd	А	В	н	w
50	230	230	165	125	20	4 - Φ18	60	52	350	200
65	290	290	185	145	22	8-Φ18	75	63	400	200
80	310	310	200	160	24	8-Φ18	91	78	355	280
100	350	350	235	190	24	8-Φ22	117	102	415	300
125	400	400	270	220	26	8-Φ26	144	128	460	320
150	480	480	300	250	28	8-Φ26	172	154	510	360
200	600	600	360	310	30	12-Φ26	223	203	710	400
250	730	730	425	370	32	12-Φ30	278	255	785	450
300	850	850	485	430	34	16-Φ30	329	305	925	500
350	980	980	555	490	38	16-Φ33	362	337	980	550
400	1100	1100	620	550	40	16-Φ36	413	387	1035	600

Standard and Specification

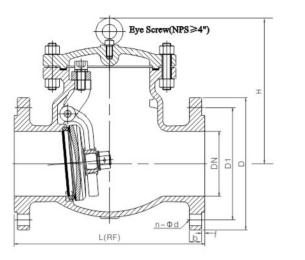
Design standard	Face to face	Flanges connection	Welding connection	Testing standard	Pressure-Temp
API6D ASME B16.34 BS1868	ANSI B16.10	ASME B16.5	ASME B16.25	API 598	ANSI B16.34

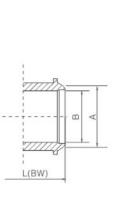
Performance specification

Nominal Pressure	Shell test	Sealing test	Top seal test
150LB	3.0	2.2	2.2
300LB	7.5	5.5	5.5
600LB	16.5	12.1	12.1
900LB	22.5	16.5	16.5
1500LB	39.0	28.6	28.6

Main part materials and property

Body Bonnet disc	Stem	Seat	Gasket	Working temperature	Suitable medium
WCB			10		
LCB					
WC6			304+Flexible Graphite	–196℃~565℃	Water
WC9	2Cr13	13Cr STELLITE F304			Steam Oil
C5	F304		316+Flexibl		Gas
CF8	F316	F316	Graphite		Nitric acid
CF3			08 Soft Steel		Acetic acid
CF8M					
CF3M					


API Swing Check Valve



API Swing Check Valve

Main external and connection dimension(150LB)

	and the second se	the second se								
	DN	L(RF)	L(BW)	D	D1	b	n−Φd	А	В	Н
2"	50	203	203	150	120.5	14	4-Φ19	60	52	160
21/2"	65	216	216	180	139.5	16	4-Φ19	75	63	180
3"	80	241	241	190	152.5	17.5	4-Φ19	91	78	190
4"	100	292	292	230	190.5	22	8-Φ19	117	102	205
5"	125	330	330	255	216	22	8-Φ22	144	128	230
6"	150	356	356	280	241.5	24	8-Φ22	172	154	258
8"	200	495	495	345	298.5	27	8-Φ22	223	203	295
10"	250	622	622	405	362	28.6	12-Φ25	278	255	355
12"	300	699	699	485	432	30	12-Φ25	329	305	395
14"	350	787	787	535	476	33.4	12-Φ29	362	337	445
16"	400	864	864	595	540	35	16-Φ29	413	387	490
18"	450	978	978	635	578	38	16-Φ32	464	438	520
20"	500	978	978	700	635	41	20 -Φ 32	516	489	545
24"	600	1295	1295	815	749.5	46	20-Φ35	619	591	880

Main external and connection dimension(300LB)

in	DN	LRF	LBW	D	D1	b	n−Φd	А	В	H
2"	50	267	267	165	127.0	21	8-Φ19	60	52	180
21/2"	65	292	292	190	149.4	24	8-Φ22	75	63	190
3"	80	318	318	210	168.1	27	8-Φ22	91	78	215
4"	100	356	356	255	200.2	30	8-Φ22	117	102	242
5"	125	400	400	280	235.0	33	8-Φ22	144	128	268
6"	150	444	444	320	269.7	35	12-Φ22	172	154	305
8"	200	533	533	380	330.2	40	12-Φ25	223	203	368
10"	250	622	622	445	387.4	46	16-Φ29	278	255	395
12"	300	711	711	520	450.9	49	16-Φ32	329	305	445
14"	350	838	838	585	514.5	52	20-Φ32	362	337	470
16"	400	846	846	650	571.5	56	20- Φ 35	413	387	530
18"	450	978	978	710	628.5	59	24-Φ35	464	438	585
20"	500	1016	1016	775	686	62	24-Φ35	516	489	610
24"	600	1346	1346	915	813	68	24-Φ41	619	591	750

Standard and Specification

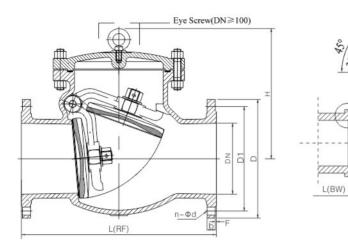
Design standard	Face to face	Flanges connection	Welding connection	Testing standard	
DIN 3356	DIN 3202	DIN 2543-2550	DIN 3239	DIN 3230	

Performance specification

Nominal Pressure	Shell test	Sealing test	
1.6	2.4	1.76	
2.5	3.8	2.75	
4.0	6.0	4.4	
6.3	9.5	6.9	
10.0	15.0	11.0	

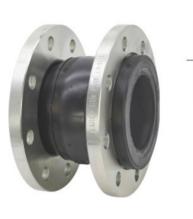
Main part materials and property

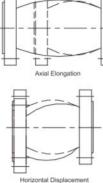
Body Bonnet disc	Pin	Gasket	Seat	Working temperature	Suitable medium
1.0619N (GS-C25)					
1.0915 (14Mn)		304+Flexible Graphite	13Cr		Water Steam
1.7337 (16CrMo44)	X20Cr13 X5CrNi18-9 X10CrNiMoTi18-10	316+Flexible Graphite 08 Soft Steel	STELLITE SS304	−196°C−565°C	Oil Gas
1.4301 (X5CrNi18-9)			SS316		Nitric acid Acetic acid.
1.4571 X10CrNiMoTi18–10)					


DIN Swing Check Valve

DIN Swing Check Valve

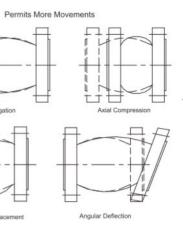
Main external and connection dimension(PN16)

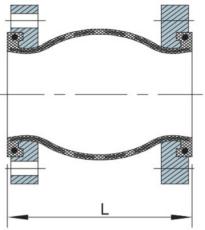

DN	L(RF)	L(BW)	D	D1	b	n−Φd	А	В	н
50	230	230	165	125	18	4-Φ18	60	52	140
65	290	290	185	145	18	4-Φ18	75	63	148
80	310	310	200	160	20	8-Φ18	91	78	175
100	350	350	220	180	20	8-Φ18	117	102	190
125	400	400	250	210	22	8-Φ18	144	128	210
150	480	480	285	240	22	8-Φ22	172	154	235
200	600	600	340	295	24	12-Φ22	223	203	308
250	730	730	405	355	26	12-Φ26	278	255	350
300	850	850	460	410	28	12-Φ26	329	305	390
350	980	980	520	470	30	16-Φ26	362	337	430
400	1100	1100	580	525	32	16-Φ30	413	387	468
450	1200	1200	640	585	34	20- Φ 30	464	438	495
500	1250	1250	715	650	36	20-Φ33	516	489	530
600	1450	1450	840	770	40	20-Φ36	619	591	615


Main external and connection dimension(PN25)

DN	LRF	LBW	D	D1	b	n−Φd	А	В	н
50	230	230	165	125	20	4-Φ18	60	52	150
65	290	290	185	145	22	8-Φ18	75	63	162
80	310	310	200	160	24	8-Φ18	91	78	180
100	350	350	235	190	24	8-Φ22	117	102	202
125	400	400	270	220	26	8-Φ26	144	128	215
150	480	480	300	250	28	8-Φ26	172	154	245
200	600	600	360	310	30	12-Φ26	223	203	315
250	730	730	425	370	32	12-Φ30	278	255	360
300	850	850	485	430	34	16-Φ30	329	305	395
350	980	980	555	490	38	16-Φ33	362	337	438
400	1100	1100	620	550	40	16-Φ36	413	387	473
450	1200	1200	670	600	46	20-Φ36	464	438	505
500	1250	1250	730	660	48	20-Φ36	516	489	542
600	1450	1450	845	770	58	20- Φ 39	619	591	628

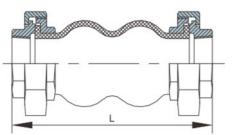
Features:


Easy installation and remove. Absorbs water vibration, noise and shock Higher resistance to deformation under pressure Widely applicable fluids and areas Flange Type: EN1092 PN10/16 Other flange types are available


Dimensions (mm)

Size	L	Axial Elongation	Axial Compression	Horizontal Displacement	Angular Deflection
DN32	95	6	9	9	15°
DN40	95	6	10	9	15°
DN50	105	7	10	10	15°
DN65	115	7	13	11	15°
DN80	135	8	15	12	15°
DN100	150	10	19	13	15°
DN125	165	12	19	14	15°
DN150	180	12	20	22	15°
DN200	210	16	25	22	15°
DN250	230	16	25	22	15°
DN300	245	16	25	22	15°
DN350	255	16	25	22	15°
DN400	255	16	25	22	15°
DN450	255	16	25	22	15°
DN500	255	16	25	22	15°
DN600	260	16	25	22	15°
DN700	260	16	25	22	15°
DN800	260	16	25	22	15°
DN900	260	16	25	22	15°
DN1000	260	16	25	22	15°

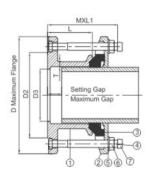
Single Sphere Rubber Expansion Joint



Item	Part Name	Material
1	Flanges	Carbon Steel – Zinc Plated
2	Reinforcing Wire	Carbon Steel Wire Strand
3	Tube	Synthetic Rubber
4	Cover	Synthetic Rubber
5	Reinforcing Cord	Synthetic Fiber

44

FLUIDO Double Sphere Union Type Rubber Expansion Joint



Dimensions (mm)

in	Size	L	Axial Elongation	Axial Compression	Lateral Movement	Angular Flexion
1/2"	DN15	180	5~6	22	22	45
3/4"	DN20	180	5-6	22	22	45
1"	DN25	180	5~6	22	22	45
1 1/4"	DN32	200	5-6	22	22	45
1 1/2"	DN40	210	5~6	22	22	45
2"	DN50	220	5-6	22	22	45
2 1/2"	DN65	245	5~6	22	22	45
3"	DN80	245	5-6	22	22	45

Universal Flange Adaptor

Features:

Ductile Iron GGG50 material with FBE coated PN10, PN16 working pressure Equipped with dacromet steel bolts, nuts. EPDM or NBR rubber seals High Tolerance Mechanical Pipe Fittings Angular deflection +/-3°

Working pressure PN16

Thread type: BSP or NPT

Dimen	sions	(mm)

Size Pipe OD(mm)		D	D2	D3	L	MXL1	Dolt No.	Woight(kg)	Flange Designation				
Size	Fipe Ob(mm)	D	02	03	L MXL1 Bolt No. Weight(weight(kg)	PN10/PN16	ANSI 125/150	Table D	Table E			
DN50	58-74	166	110	50	100	M12X150	4	4.2	•	•	•	•	
DN60	68-84	187	125	65	100	M12X150	4	5.0	•	•	•	•	
DN80	84-105	200	140	80	100	M12X150	4	6.3	•	•	٠	•	
DN100	99-118	235	155	100	100	M12X150	4	6.8	•	•	•	•	
DN100	109-133	235	155	100	105	M12X150	4	7.8	•	•	٠	٠	
DN125	133-157	285	185	133	110	M12X170	4	11.0	•	•	•	•	
DN150	157-182	285	215	150	110	M12X170	4	12.5	•	•		•	
DN200	194-215	345	265	200	120	M12X170	4	15.5	•	•		٠	
DN200	218-242	245	265	200	120	M12X170	4	17.5	•	•		•	
DN250	242-268	410	320	245	120	M12X170	6	20.5	•	•			
DN250	266-291	410	320	250	120	M12X170	6	21.0	•	•			
DN250	280-305	410	320	250	120	M12X170	6	25.5	•	•			
DN300	302-327	490	370	300	120	M12X170	6	27.0	•	•		•	
DN300	324-350	455	410	310	140	M12X190	6	24.0	•				
DN350	352-378	520	470	350	120	M14X170	8	25.4	•				
DN350	384-410	520	470	360	140	M14X190	8	29.2	•				
DN400	384-410	580	525	400	160	M14X210	8	29.2	•				
DN400	410-436	580	525	400	160	M14X210	8	34.5	•				
DN400	436-462	580	525	410	160	M14X210	8	36.8	•				

FLUIDO

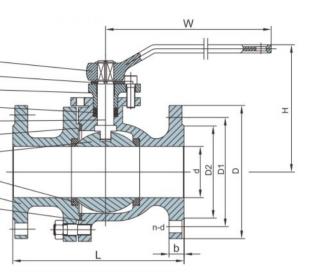
Technical Specification:

Design: DIN 3357 Face to Face : DN15-DN100 DIN3202 F4 DN125-DN250 DIN3202 F5 Flanges: EN 1092-2 PN16 Hydraulic test to ISO 5208 Seat Test Pressure: 17.6 bar Shell Test Pressure: 24 bar

Features:

Full Port Low torque operation Product color: Blue RAL 5017 Maximum Temperature 150°C

Dimensions (mm)


Size	d		D	D1	D2	b	n–d	н	Plug	W.T(kg)
DN15	15	115	95	65	45	14	4-14	78	130	2.6
DN20	20	120	105	75	58	16	4-14	113	160	3.7
DN25	25	125	115	85	68	16	4-14	107	160	4.4
DN32	32	130	140	100	78	18	4-19	113	160	6.6
DN40	40	140	150	110	88	18	4-19	130	250	8
DN50	50	150	165	125	102	20	4-19	146	250	10
DN65	65	170	185	145	122	20	4-19	176	350	15.5
DN80	80	180	200	160	138	22	8–19	222	350	20
DN100	100	190	220	180	158	24	8–19	300	400	26.5
DN125	125	325	250	210	188	26	8-19	325	600	49.5
DN150	150	350	285	240	212	26	8–23	350	600	65.5
DN200	200	400	340	295	268	30	12-23	310	600	142
DN250	250	450	405	355	320	32	12-28	1	/	215

* Request for special characteristic is available. FLUIDO reserves the right to modify dimensions, materials, or design on products without prior notice.

Full Bore Cast Iron Ball Valve

DIN3357

ltem	Part Name	Material
1	Body	GG25 / GGG50
2	Bonnet	GG25 / GGG50
3	Ball	AISI 410/AISI 304
4	Seat	PTFE / RPTFE
5	Gasket	PTFE
6	Stem	SS AISI 410
7	Stem Packing	PTFE
8	Stop collar	Carbon steel
9	Gland flange	GG25 / GGG50
10	Lever	GGG50

Fluido Stainless Steel Ball Valve

Fluido Stainless Steel Ball Valve

laterial: Stainless Steel & Carbon Steel,Brass,Bronze	
ressure:600/1000/1500/2000/3000/6000 W.O.G	
ype:Standard Bore & Full Bore	

Connection:Threaded,Butt Weld Ends,Socket Weld,Flanged

1PC Ball Valve

3PC Ball Valve

Flanged Ball Valve

Ultra ball valve

Swing Check Valve

Butt Welded Ball Valve

Socket Welding Ball Valve

Spring Vertical Check Valve

--> Quality Control

From mold design, material control, dimension control to packaging and surface treatment, Fluido always strictly control the quality of valves to ensure timely delivery of all orders.

We accept three types of inspections: self-inspection, customer inspection, and third-party inspection:

1. Self-inspection: Each valve must undergo professional QC testing before leaving the factory, including appearance testing, material testing, pressure testing, packaging testing, as well as drawing and order checks.

2. Customer inspection: Customers can inspect in our workshop. If on-site inspection is not possible, Fluido can provide real-time inspection methods such as pictures, videos, WhatsApp, etc. We will have professional inspectors to guide the inspection process.

3. Third-party inspection: Customers can commission third parties such as SGS, TUV, or BV to inspect the valves, and we will actively cooperate with all inspection contents, including product quality and document handling.

Test equipment-for DN50, DN65, DN80, DN100, DN125, DN150

Packing method

Open/close valve 5times

Fixed the valve

Brass Ball Valve

QINGDAO FLUIDO INDUSTRIAL CO.,LTD www.fluidovalve.com www.eathu.com info@eathu.com

Stainless steel spring Singe Disc Wafer

Service Commitment

Product view

Product view

Beginning test

Set 2.4Mpa

Keep 60s

Product view

